In the US, transit deserts are making it hard for people to find jobs and stay healthy

Many Americans need reliable public transit to get to school or work. Image: Frank Hank/creative commons.

As any commuter who has experienced unreliable service or lives miles away from a bus stop will tell you, sometimes public transit isn’t really a viable option, even in major cities.

In our car-loving society, where 85 per cent of Americans use a car to get to work, people who cannot access transportation are excluded from their own communities and trapped inside “transit deserts.” This term, which one of us (Junfeng Jiao) coined, describes areas in a city where demand for transit is high but supply is low.

Lack of transit has harmful effects on those who rely on public transit – generally, people who are too young, too old, too poor or have disabilities that don’t allow them to drive. Mapping these deserts will help agencies adjust transit services and better serve their communities.

At UT Austin’s Urban Information Lab, our research focuses on refining the methods used to quantify and measure transit supply and demand. We’ve developed clear and concise geographic information system (GIS) methods to evaluate transportation systems, providing alternatives to previous, more complicated network modeling. These methods can quickly be applied to any location, as we have shown in studies of five major cities in Texas and other cities across the United States. By using this method, we found that hundreds of thousands of transit-dependent people in Texas don’t have access to mass transit systems.

Connecting people to jobs and services

Research shows that low-income residents living in sprawling areas have limited transportation options, which constrains their job opportunities and upward mobility. Inadequate transportation keeps people from finding work, which then reduces the productivity of their communities. It also can limit access to medical services, causing health problems to go undetected or worsen.

Addressing transit access is one important strategy for tackling broader social problems. For example, welfare recipients are less likely to own cars or have access to transit than the general population. Reducing these transportation barriers would help move them from welfare to work.

In cities with well-developed infrastructure for cycling, such as Amsterdam, large shares of the population commute by bicycle. Image: Steven Lek/author provided.

Although scholars have been studying “food deserts” (areas where residents lack access to nutritious food) for several decades, we have only recently applied this logic to mass transportation systems, despite the fact that food deserts often occur due to lack of transportation.

Relatively little research has been carried out to identify and quantify gaps between transit demand and supply. But as counties and cities feel the effects of declining funding from federal and state transportation user fees, they need new ways to target transportation infrastructure investments and ensure limited resources are used in the best way possible. We have found that maps are a promising way to guide these discussions.

Mapping transit deserts

Determining exactly who relies on mass transit can be difficult. Existing information depends on census data. As previously noted, people who rely on transit are usually from marginalised demographic groups. They may be elderly, poor or have disabilities that keep them from driving. Census data do not account for the fact that sometimes these populations overlap (a transit-dependent person could be old as well as poor), so one individual could be counted many times.

Also, census data on car ownership are not available at the census block group level, which is the smallest geographic unit published by the U.S. Census Bureau. This lack of data makes it hard to measure transit dependency with accuracy.

Measuring transit supply is easier. It relies on data from municipal planning agencies as well as relevant municipal and county GIS departments, which manage spatial and geographic information, analysis tools and mapping products. These agencies measure variables that include numbers of transit stops, transit routes and frequency of service, as well as lengths of sidewalks, bicycle lanes and low speed-limit routes (which are relevant because some commuters may opt to walk instead of taking the bus).

Beyond city centers

Current research shows that transit deserts exist all over the country. Cities such as Chicago; Cincinnati; Charlotte, North Carolina; Portland, Oregon; and San Antonio contain multiple communities that don’t have enough transit services to meet existing demand. Even in older cities, where development tends to follow transit lines, there are neighborhoods where the supply of transit is simply not enough.

This is a large-scale problem. In San Antonio, the seventh-largest U.S. city by population, some 334,530 people – nearly one-fourth of the population – need access to public transportation in a city that doesn’t even have rail service. In Chicago, where there are high levels of transit dependency all across the city, just three of the transit desert neighborhoods that we identified house approximately 176,806 residents. Even in a city as progressive as Portland, Oregon, thousands live in transit desert neighborhoods.

Transit desert analysis for the city of San Antonio. Negative numbers connote areas where demand for transit exceeds supply. Image: author provided.

When it comes to geographic location, transit demand and supply appear to follow certain spatial patterns. Unsurprisingly, transit supply is highest in city centers and decreases as distance from city centers increases. As a result, transit deserts do not typically occur in city centers or near downtown. In fact, because of the typical “hub and spoke” design of many transit services, city centers often have transit surpluses where supply outstrips demand.

The location of transit deserts often does not follow a geographic pattern, although they are usually associated with low-income and remote areas. While planners and engineers may have a rough idea of where supply is low, making service adjustments requires measuring and mapping of transit supply and demand citywide.


Rebalancing transit networks

Many cities are now making service adjustments to improve service to transit deserts. For example, Houston’s transit authority, METRO, recently redesigned its bus service as part of a larger “Transit Service Reimagining,” in an attempt to better meet the region’s mobility needs. Evaluation of the new transit services shows that current levels of transit demand and supply are more balanced, though gaps still exist.

Identifying transit deserts is even catching on at the federal level. The U.S. Department of Transportation recently launched a new initiative to map transit deserts nationally through a National Transit Map, which will put together data from different transit agencies into a complete feed. By accessing a larger, national look at transit demand and supply, regional agencies will have extra tools available to them when making changes to their local transit services.

What these changes will be is hard to say. Expanding existing bus services may be the most cost-effective way to improve transit access. Even in New York City, with its massive subway system, city officials are increasingly turning to bus rapid transit due to the high cost of adding new subway lines.

Adding bus lines, increasing service hours and even streamlining boarding and fares can help improve service and increase access. Integrating bicycling with transit services would be another cost-effective option.

The ConversationAs research on transit deserts continues to grow, more precise methods of quantifying the gap between transit supply and demand should develop. More research may provide new views on how the built environment and socioeconomic variables affect transportation accessibility. With careful planning and investment, these transit deserts can eventually transform into transit oases.

Junfeng Jiao is assistant professor of community & regional planning and director of the Urban Information Lab, and Nicole McGrath an MS candidate in community & regional planning, at University of Texas at Austin.

This article was originally published on The Conversation. Read the original article.

 
 
 
 

To build its emerging “megaregions”, the USA should turn to trains

Under construction: high speed rail in California. Image: Getty.

An extract from “Designing the Megaregion: Meeting Urban Challenges at a New Scale”, out now from Island Press.

A regional transportation system does not become balanced until all its parts are operating effectively. Highways, arterial streets, and local streets are essential, and every megaregion has them, although there is often a big backlog of needed repairs, especially for bridges. Airports for long-distance travel are also recognized as essential, and there are major airports in all the evolving megaregions. Both highways and airports are overloaded at peak periods in the megaregions because of gaps in the rest of the transportation system. Predictions for 2040, when the megaregions will be far more developed than they are today, show that there will be much worse traffic congestion and more airport delays.

What is needed to create a better balance? Passenger rail service that is fast enough to be competitive with driving and with some short airplane trips, commuter rail to major employment centers to take some travelers off highways, and improved local transit systems, especially those that make use of exclusive transit rights-of-way, again to reduce the number of cars on highways and arterial roads. Bicycle paths, sidewalks, and pedestrian paths are also important for reducing car trips in neighborhoods and business centers.

Implementing “fast enough” passenger rail

Long-distance Amtrak trains and commuter rail on conventional, unelectrified tracks are powered by diesel locomotives that can attain a maximum permitted speed of 79 miles per hour, which works out to average operating speeds of 30 to 50 miles per hour. At these speeds, trains are not competitive with driving or even short airline flights.

Trains that can attain 110 miles per hour and can operate at average speeds of 70 miles per hour are fast enough to help balance transportation in megaregions. A trip that takes two to three hours by rail can be competitive with a one-hour flight because of the need to allow an hour and a half or more to get to the boarding area through security, plus the time needed to pick up checked baggage. A two-to-three-hour train trip can be competitive with driving when the distance between destinations is more than two hundred miles – particularly for business travelers who want to sit and work on the train. Of course, the trains also have to be frequent enough, and the traveler’s destination needs to be easily reachable from a train station.

An important factor in reaching higher railway speeds is the recent federal law requiring all trains to have a positive train control safety system, where automated devices manage train separation to avoid collisions, as well as to prevent excessive speeds and deal with track repairs and other temporary situations. What are called high-speed trains in the United States, averaging 70 miles per hour, need gate controls at grade crossings, upgraded tracks, and trains with tilt technology – as on the Acela trains – to permit faster speeds around curves. The Virgin Trains in Florida have diesel-electric locomotives with an electrical generator on board that drives the train but is powered by a diesel engine. 

The faster the train needs to operate, the larger, and heavier, these diesel-electric locomotives have to be, setting an effective speed limit on this technology. The faster speeds possible on the portion of Amtrak’s Acela service north of New Haven, Connecticut, came after the entire line was electrified, as engines that get their power from lines along the track can be smaller and much lighter, and thus go faster. Catenary or third-rail electric trains, like Amtrak’s Acela, can attain speeds of 150 miles per hour, but only a few portions of the tracks now permit this, and average operating speeds are much lower.

Possible alternatives to fast enough trains

True electric high-speed rail can attain maximum operating speeds of 150 to 220 miles per hour, with average operating speeds from 120 to 200 miles per hour. These trains need their own grade-separated track structure, which means new alignments, which are expensive to build. In some places the property-acquisition problem may make a new alignment impossible, unless tunnels are used. True high speeds may be attained by the proposed Texas Central train from Dallas to Houston, and on some portions of the California High-Speed Rail line, should it ever be completed. All of the California line is to be electrified, but some sections will be conventional tracks so that average operating speeds will be lower.


Maglev technology is sometimes mentioned as the ultimate solution to attaining high-speed rail travel. A maglev train travels just above a guideway using magnetic levitation and is propelled by electromagnetic energy. There is an operating maglev train connecting the center of Shanghai to its Pudong International Airport. It can reach a top speed of 267 miles per hour, although its average speed is much lower, as the distance is short and most of the trip is spent getting up to speed or decelerating. The Chinese government has not, so far, used this technology in any other application while building a national system of long-distance, high-speed electric trains. However, there has been a recent announcement of a proposed Chinese maglev train that can attain speeds of 375 miles per hour.

The Hyperloop is a proposed technology that would, in theory, permit passenger trains to travel through large tubes from which all air has been evacuated, and would be even faster than today’s highest-speed trains. Elon Musk has formed a company to develop this virtually frictionless mode of travel, which would have speeds to make it competitive with medium- and even long-distance airplane travel. However, the Hyperloop technology is not yet ready to be applied to real travel situations, and the infrastructure to support it, whether an elevated system or a tunnel, will have all the problems of building conventional high-speed rail on separate guideways, and will also be even more expensive, as a tube has to be constructed as well as the train.

Megaregions need fast enough trains now

Even if new technology someday creates long-distance passenger trains with travel times competitive with airplanes, passenger traffic will still benefit from upgrading rail service to fast-enough trains for many of the trips within a megaregion, now and in the future. States already have the responsibility of financing passenger trains in megaregion rail corridors. Section 209 of the federal Passenger Rail Investment and Improvement Act of 2008 requires states to pay 85 percent of operating costs for all Amtrak routes of less than 750 miles (the legislation exempts the Northeast Corridor) as well as capital maintenance costs of the Amtrak equipment they use, plus support costs for such programs as safety and marketing. 

California’s Caltrans and Capitol Corridor Joint Powers Authority, Connecticut, Indiana, Illinois, Maine’s Northern New England Passenger Rail Authority, Massachusetts, Michigan, Missouri, New York, North Carolina, Oklahoma, Oregon, Pennsylvania, Texas, Vermont, Virginia, Washington, and Wisconsin all have agreements with Amtrak to operate their state corridor services. Amtrak has agreements with the freight railroads that own the tracks, and by law, its operations have priority over freight trains.

At present it appears that upgrading these corridor services to fast-enough trains will also be primarily the responsibility of the states, although they may be able to receive federal grants and loans. The track improvements being financed by the State of Michigan are an example of the way a state can take control over rail service. These tracks will eventually be part of 110-mile-per-hour service between Chicago and Detroit, with commitments from not just Michigan but also Illinois and Indiana. Fast-enough service between Chicago and Detroit could become a major organizer in an evolving megaregion, with stops at key cities along the way, including Kalamazoo, Battle Creek, and Ann Arbor. 

Cooperation among states for faster train service requires formal agreements, in this case, the Midwest Interstate Passenger Rail Compact. The participants are Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, and Wisconsin. There is also an advocacy organization to support the objectives of the compact, the Midwest Interstate Passenger Rail Commission.

States could, in future, reach operating agreements with a private company such as Virgin Trains USA, but the private company would have to negotiate its own agreement with the freight railroads, and also negotiate its own dispatching priorities. Virgin Trains says in its prospectus that it can finance track improvements itself. If the Virgin Trains service in Florida proves to be profitable, it could lead to other private investments in fast-enough trains.

Jonathan Barnett is an emeritus Professor of Practice in City and Regional Planning, and former director of the Urban Design Program, at the University of Pennsylvania. 

This is an extract from “Designing the Megaregion: Meeting Urban Challenges at a New Scale”, published now by Island Press. You can find out more here.