Self-driving cars may be safe – but they could still prevent walkable, liveable communities

A self-driving car, driving itself. Image: Grendelkhan/Flickr/creative commons.

Almost exactly a decade ago, I was cycling in a bike lane when a car hit me from behind. Luckily, I suffered only a couple bruised ribs and some road rash. But ever since, I have felt my pulse rise when I hear a car coming up behind my bike.

As self-driving cars roll out, they’re already being billed as making me – and millions of American cyclists, pedestrians and vehicle passengers – safer.

As a driver and a cyclist, I initially welcomed the idea of self-driving cars that could detect nearby people and be programmed not to hit them, making the streets safer for everyone. Autonomous vehicles also seemed to provide attractive ways to use roads more efficiently and reduce the need for parking in our communities. People are certainly talking about how self-driving cars could help build more sustainable, livable, walkable and bikable communities.

But as an urban planner and transportation scholar who, like most people in my field, has paid close attention to the discussion around driverless cars, I have come to understand that autonomous vehicles will not complement modern urban planning goals of building people-centered communities. In fact, I think they’re mutually exclusive: we can have a world of safe, efficient, driverless cars, or we can have a world where people can walk, bike and take transit in high-quality, human-scaled communities.

Changing humans’ behavior

These days, with human-driven cars all over the place, I choose my riding routes and behavior carefully: I much prefer to ride on low-speed traffic, low-traffic roads, buffered bike lanes or off-street bike paths whenever possible, even if it means going substantially out of my way. That’s because I’m scared of what a human driver – through error, ignorance, inattention or even malice – might do to me on tougher roads.

But in a hypothetical future in which all cars are autonomous, maybe I’ll make different choices? So long as I’m confident self-driving cars will at least try to avoid killing me on my bike, I’ll take the most direct route to my destination, on roads that I consider much too dangerous to ride on today. I won’t need to worry about drivers because the technology will protect me.

Driverless cars will level the playing field: I’ll finally be able to ride where I am comfortable in a lane, rather than in the gutter – and pedal at a comfortable speed for myself rather than racing to keep up with, or get out of the way of, other riders or vehicles. I can even see riding with my kids on roads, instead of driving somewhere safe to ride like a park. (Of course, this is all still assuming driverless cars will eventually figure out how to avoid killing cyclists.)

To bikers and people interested in vibrant communities, this sounds great. I’m sure I won’t be the only cyclist who makes these choices. But that actually becomes a problem.

The tragedy of the commons

In the midsize midwestern college town I call home, estimates suggest about 4,000 people commute by bike. That might not sound like many, but consider the traffic backups that would result if even just a few hundred cyclists went out at rush hour and rode at leisurely speeds on the half-dozen arterial roads in my city.

Technology optimists might suggest that driverless cars will be able to pass cyclists more safely and efficiently. They might also be directed to use other roads that are less clogged, though that carries its own risks.

But what happens if it’s a lovely spring afternoon and all those 4,000 bike commuters are riding, in addition to a few thousand kids and teenagers running, riding or skating down my local roads? Some might even try to disrupt the flow of traffic by walking back and forth in the road or even just standing and texting, confident the cars will not hit them. It’s easy to see how good driverless cars will enable people to enjoy those previously terrifying streets, but it also demonstrates that safety for people and efficiency for cars can’t happen at the same time.


People versus cars

It’s not hard to imagine a situation where driverless cars can’t get anywhere efficiently – except late at night or early in the morning. That’s the sort of problem policy scholars enjoy working on, trying to engineer ways for people and technology to get along better.


One proposed solution would put cars and bicycles on different areas of the streets, or transform certain streets into “autonomous only” thoroughfares. But I question the logic of undertaking massive road-building projects when many cities today struggle to afford basic maintenance of their existing streets.

An alternative could be to simply make new rules governing how people should behave around autonomous vehicles. Similar rules exist already: Bikes aren’t allowed on most freeways, and jaywalking is illegal across most of the U.S.

Regulating people instead of cars would be cheaper than designing and building new streets. It would also help work around some of the technical problems of teaching driverless cars to avoid every possible danger – or even just learning to recognize bicycles in the first place.

However, telling people what they can and can’t do in the streets raises a key problem. In vibrant communities, roads are public property, which everyone can use for transportation, of course – but also for commerce, civil discourse and even civil disobedience. Most of the U.S., however, appears to have implicitly decided that streets are primarily for moving cars quickly from one place to another.

There might be an argument for driverless cars in rural areas, or for intercity travel, but in cities, if driverless cars merely replace human-driven vehicles, then communities won’t change much, or they may become even more car-dependent. If people choose to prioritise road safety over all other factors, that will shift how people use roads, sidewalks and other public ways. But then autonomous vehicles will never be particularly efficient or convenient.

The Conversation

Daniel Piatkowski, Assistant Professor of Community and Regional Planning, University of Nebraska-Lincoln

This article is republished from The Conversation under a Creative Commons license. Read the original article.

 
 
 
 

Green roofs improve cities – so why don’t all buildings have them?

The green roof at the Kennedy Centre, Washington DC. Image: Getty.

Rooftops covered with grass, vegetable gardens and lush foliage are now a common sight in many cities around the world. More and more private companies and city authorities are investing in green roofs, drawn to their wide-ranging benefits which include savings on energy costs, mitigating the risk from floods, creating habitats for urban wildlife, tackling air pollution and urban heat and even producing food.

A recent report in the UK suggested that the green roof market there is expanding at a rate of 17 per cent each year. The world’s largest rooftop farm will open in Paris in 2020, superseding similar schemes in New York City and Chicago. Stuttgart, in Germany, is thought of as “the green roof capital of Europe”, while Singapore is even installing green roofs on buses.

These increasingly radical urban designs can help cities adapt to the monumental challenges they face, such as access to resources and a lack of green space due to development. But buy-in from city authorities, businesses and other institutions is crucial to ensuring their success – as is research investigating different options to suit the variety of rooftop spaces found in cities.

A growing trend

The UK is relatively new to developing green roofs, and governments and institutions are playing a major role in spreading the practice. London is home to much of the UK’s green roof market, mainly due to forward-thinking policies such as the 2008 London Plan, which paved the way to more than double the area of green roofs in the capital.

Although London has led the way, there are now “living labs” at the Universities of Sheffield and Salford which are helping to establish the precedent elsewhere. The IGNITION project – led by the Greater Manchester Combined Authority – involves the development of a living lab at the University of Salford, with the aim of uncovering ways to convince developers and investors to adopt green roofs.

Ongoing research is showcasing how green roofs can integrate with living walls and sustainable drainage systems on the ground, such as street trees, to better manage water and make the built environment more sustainable.

Research is also demonstrating the social value of green roofs. Doctors are increasingly prescribing time spent gardening outdoors for patients dealiong with anxiety and depression. And research has found that access to even the most basic green spaces can provide a better quality of life for dementia sufferers and help prevent obesity.

An edible roof at Fenway Park, stadium of the Boston Red Sox. Image: Michael Hardman/author provided.

In North America, green roofs have become mainstream, with a wide array of expansive, accessible and food-producing roofs installed in buildings. Again, city leaders and authorities have helped push the movement forward – only recently, San Francisco created a policy requiring new buildings to have green roofs. Toronto has policies dating from the 1990s, encouraging the development of urban farms on rooftops.

These countries also benefit from having newer buildings, which make it easier to install green roofs. Being able to store and distribute water right across the rooftop is crucial to maintaining the plants on any green roof – especially on “edible roofs” which farm fruit and vegetables. And it’s much easier to create this capacity in newer buildings, which can typically hold greater weight, than retro-fit old ones. Having a stronger roof also makes it easier to grow a greater variety of plants, since the soil can be deeper.


The new normal?

For green roofs to become the norm for new developments, there needs to be buy-in from public authorities and private actors. Those responsible for maintaining buildings may have to acquire new skills, such as landscaping, and in some cases volunteers may be needed to help out. Other considerations include installing drainage paths, meeting health and safety requirements and perhaps allowing access for the public, as well as planning restrictions and disruption from regular ativities in and around the buildings during installation.

To convince investors and developers that installing green roofs is worthwhile, economic arguments are still the most important. The term “natural capital” has been developed to explain the economic value of nature; for example, measuring the money saved by installing natural solutions to protect against flood damage, adapt to climate change or help people lead healthier and happier lives.

As the expertise about green roofs grows, official standards have been developed to ensure that they are designed, built and maintained properly, and function well. Improvements in the science and technology underpinning green roof development have also led to new variations on the concept.

For example, “blue roofs” increase the capacity of buildings to hold water over longer periods of time, rather than drain away quickly – crucial in times of heavier rainfall. There are also combinations of green roofs with solar panels, and “brown roofs” which are wilder in nature and maximise biodiversity.

If the trend continues, it could create new jobs and a more vibrant and sustainable local food economy – alongside many other benefits. There are still barriers to overcome, but the evidence so far indicates that green roofs have the potential to transform cities and help them function sustainably long into the future. The success stories need to be studied and replicated elsewhere, to make green, blue, brown and food-producing roofs the norm in cities around the world.

Michael Hardman, Senior Lecturer in Urban Geography, University of Salford and Nick Davies, Research Fellow, University of Salford.

This article is republished from The Conversation under a Creative Commons license. Read the original article.