London's Tube has been running so long it's literally raising the temperature of the earth around it

Londoners swelter on the Central line during the heat wave of 2003. Image: Getty.

“Why is the tube so hot?” is one of those questions Londoners find themselves asking a lot during the three or four days a year when the city’s weather isn’t completely bloody miserable. But it’s not something to which I’ve ever given much thought. Lot of people, enclosed space – the reasons are obvious, surely?

Except, not every underground railway in the world has this problem. And once upon a time, London didn’t either: when the Bakerloo line first opened, posters suggested it was a good place to keep cool on a hot day, an idea that’s clearly nonsensical in 2017.

And then, from the Twitter feed of occasional CityMetric contributor @LeftOutside earlier*, I learned something genuinely amazing:

My mind, as the kids say, is blown.

And it’s true. In 1900, according to this fascinating article in Rail magazine, the ambient heat of the earth surrounding the tunnels – clay, mostly – was around 14°C. In the height of summer, the tunnels were indeed colder than the air above, so it made sense to travel by tube to cool down.

The problem is – trains full of people tend to give off heat. According to this article from a 2007 edition of Plant Engineering magazine, the vast majority (89 per cent) of that heat comes from the train itself (the friction during braking is the big one), 7 per cent from passengers and 4 per cent from “Tunnel support systems”.

What happens to this heat? On the sub-surface lines – basically, those which share tracks with the Circle – it’s not too big a problem. The tunnels are close to the surface, so often emerge into the light for brief periods (Barbican, South Kensington and Edgware Road are all above ground). They also have plenty of ventilation shafts. The heat has somewhere to go.

The deep tubes, though – the ones which are literally tunnels bored through the ground – are more problematic. Most of them are old, so were built before anyone realised heat would be a problem, and don’t come with enough ventilation shafts to solve it. The air is trapped. And so, the heat is absorbed by the walls, and the earth behind them.

In 1900, as noted above, the average ambient temperature was 14°C. Some 117 years and millions of trains later, it can be anywhere between 20°C and 25°C.


 Let’s just say that again: London has been running tube trains so long that the ground beneath parts of the city is now as much as 10°C hotter than it was in 1900.

One result of this is that the earth has become much less effective at absorbing the excess heat. That means the tunnels themselves have heated up, too. A lot: air inside them can often reach as high as 30°C. You’ve probably noticed this is you’ve been on the tube recently.

For the last decade or so, Transport for London has been looking for solutions to this. Some of them involve increasing the capacity of existing ventilation systems (lack of space above ground means it’s extremely difficult to build new ones). Others involve adding systems which circulate water to cool the air. Yet other options involve things like more efficient braking systems, on the grounds that if you put less heat in, you have less to take out.

Experimental air coolers on the Victoria line. Image: Oxyman/Wikipedia Commons.

It’s clear that there’s no easy solution, however: in 2003, then London mayor Ken Livingstone offered a prize of £100,000 to anyone who could come up with fresh ideas. Nobody could think of anything TfL wasn’t already trying, and the prize went unclaimed.

The upside to this story is that other cities have learned from London’s mistakes, and ensured that ventilation systems are an integral part of new metro systems.

The downside is you’re likely to boil every time you get the Central line in summer for the foreseeable future.

*LeftOutside has since been in touch to tell me he was summarising another article, from the Ian Visits blog. I haven’t read that one – the above article is drawn from the two articles I reference, plus some bits from TfL. But in the name of politeness and an easy life I'm acknowledging its existence and adding a link. Read that too, if you like. 

Jonn Elledge is the editor of CityMetric. He is on Twitter as @jonnelledge and also has a Facebook page now for some reason. 

Want more of this stuff? Follow CityMetric on Twitter or Facebook

 
 
 
 

Podcast: The Great Northern Rail Crisis

Manchester Victoria station during a 2017 strike. Image: Getty.

You wouldn’t necessarily know it reading the news from London, but the north of England’s railway network is in a bit of a mess. Delayed electrification work, a new timetable, mass cancellations, the whole shebang.

To explain how bad things are, and how they got that way, I’m joined by Jen Williams, political and social affairs editor for the Manchester Evening News. She tells me why nobody seems sure who’s to blame for this mess, and whether there’s any realistic chance of anyone tidying it up any time soon. All that, and we talk about Andy Burnham, too.

The episode itself is below. You can subscribe to the podcast on AcastiTunes, or RSS. Enjoy.

Skylines is supported by 100 Resilient Cities. Pioneered by the Rockefeller Foundation, 100RC is dedicated to helping cities around the world become more resilient to the physical, social and economic challenges that are a growing part of the 21st century.

Jonn Elledge is the editor of CityMetric. He is on Twitter as @jonnelledge and on Facebook as JonnElledgeWrites.

Want more of this stuff? Follow CityMetric on Twitter or Facebook.