Ignore the car industry: driverless vehicles won’t deliver a transport revolution

A robobus. Image: Getty.

The breathless hype around driverless electric vehicles once promised an urban transport “revolution”, with claims that new technologies would ease congestion and eliminate harmful emissions. The potential benefits of these new technologies are stimulating both activity and anxiety in the car industry – specifically around whether the cost of investment will be justified by profits from sales of new vehicles.

The initial enthusiasm for driverless vehicles has gradually subsided, as the difficulties with introducing such technologies at scale in cities become better understood. As I explain in my new book Driving Change: Travel in the 21st Century, the future of the car is likely to be less exciting than many suppose. Rather than a revolution, these innovations will offer gradual change, when – and indeed if – the car industry can make it worthwhile.

Of course, electric motors will help to reduce tailpipe emissions of carbon dioxide and other pollutants. But commercial success is likely to depend on the optimal choice of battery chemistry to maximise the car’s range, while delivering long-life, lightweight and fast recharging cells. The recent decision by British inventor James Dyson to cancel his electric car project highlights the risks for new entrants.

Automated systems can already relieve drivers of tasks such as parking, and may ultimately lead to driverless travel. Yet both the performance and timing of autonomous vehicles (AVs) are very uncertain – independent observers predict an extended timescale for wide deployment: perhaps the 2040s to 2050s.

Safety first

A key task is to agree safety standards for AVs. People are willing to accept some small risk of death or injury when at the wheel of their own car, even though 1,784 people were killed on UK roads in 2018. But when someone else in is charge – as for rail and air travel – we demand far higher standards. AVs are potentially much safer, since they could eliminate human error that is responsible for 95 per cent of road accidents.

Yet to demonstrate safe performance would require huge amounts of on-road testing, once the technology reaches an acceptable standard. Proponents argue that the best is the enemy of the good, so that AVs should be accepted for general use once they are better than a good human driver, with the expectation that their safety performance will improve as the technology is refined with increasing experience.

Within the car industry, there’s a sense of inevitability that driverless cars are the future. But there will need to be demonstrable benefits if the public is to pay the extra costs. Eliminating human taxi drivers could offer a substantial economic benefit: a robotic taxi summoned with an app is seen by some as an alternative to owning your own car.

Yet the feasibility of robotaxis is far from clear, particularly in cities with historic street layouts and extensive kerbside parking, where narrow roads require negotiation between drivers going in opposite directions. Driverless vehicles are initially being deployed in well-defined low-speed locations such as campuses, airports and business parks. Motorways where pedestrians and cyclists are excluded offer another likely location – yet getting to and from such dedicated roads would require navigation through populated streets, where driverless performance could be problematic.


Still a tough sell

Traffic congestion is the most intractable problem of the road system, reflecting an excess of demand for car travel in relation to road capacity in towns and cities where there is generally both high population density and high car ownership. Privately owned AVs could actually add to congestion, since they would travel without a passenger, for instance returning home after dropping people off, or cruising round the block while the owner is shopping.

Historic transport innovations have allowed step changes in the speed of travel: the railway in the 19th century, the car in the 20th. Increases in access to destinations, services, opportunities and choices made possible by such innovations have justified huge investments by manufacturers, public authorities and the travelling public.

By contrast, the new transport innovations will not increase the speed of travel. The car of the future will be electrically propelled, have extensive digital functionality and driverless options. But it’s unlikely to make much faster progress through traffic than the car of today.

These new transport innovations will not transform why and where people travel. Rather, they will offer incremental improvement to the quality of our journeys. As the car industry switches to electric propulsion and develops driverless options, the lack of a transformational offering to car buyers could make it hard to recover the costs of development.

Drivers will take up these innovations if they offer good value. Now, the task of the car industry is to drive down costs, to make their offerings more attractive – as it has always aimed to do.

The Conversation

David Metz, Honorary Professor of Transport Studies, UCL.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

 
 
 
 

Transport for London’s fare zones secretly go up to 15

Some of these stations are in zones 10 to 12. Ooooh. Image: TfL.

The British capital, as every true-blooded Londoner knows, is divided into six concentric zones, from zone 1 in the centre to zone 6 in the green belt-hugging outer suburbs.

These are officially fare zones, which Transport for London (TfL) uses to determine the cost of your tube or rail journey. Unofficially, though, they’ve sort of become more than that, and like postcodes double as a sort of status symbol, a marker of how London-y a district actually is.

If you’re the sort of Londoner who’s also interested in transport nerdery, or who has spent any time studying the tube map, you’ll probably know that there are three more zones on the fringes of the capital. These, numbered 7 to 9, are used to set and collect fares at non-London stations where the Oyster card still works. But they differ from the first six, in that they aren’t concentric rings, but random patches, reflecting not distance from London but pre-existing and faintly arbitrary fares. Thus it is that at some points (on the Overground to Cheshunt, say) trains leaving zone 6 will visit zone 7. But at others they jump to 8 (on the train to Dartford) or 9 (on TfL rail to Brentwood), or skip them altogether.

Anyway: it turns out that, although they’re keeping it fairly quiet, the zones don’t stop at 9 either. They go all the way up to 15.

So I learned this week from the hero who runs the South East Rail Group Twitter feed, when they (well, let’s be honest: he) tweeted me this:

The choice of numbers is quite odd in its way. Purfleet, a small Thames-side village in Essex, is not only barely a mile from the London border, it’s actually inside the M25. Yet it’s all the way out in the notional zone 10. What gives?

TfL’s Ticketing + Revenue Update is a surprisingly jazzy internal newsletter about, well, you can probably guess. The September/October 2018 edition, published on WhatDoTheyKnow.com following a freedom of information request, contains a helpful explanation of what’s going on. The expansion of the Oyster card system

“has seen [Pay As You Go fare] acceptance extended to Grays, Hertford East, Shenfield, Dartford and Swanley. These expansions have been identified by additional zones mainly for PAYG caping and charging purposes.

“Although these additional zones appear on our staff PAYG map, they are no generally advertised to customers, as there is the risk of potentially confusing users or leading them to think that these ones function in exactly the same way as Zones 1-6.”


Fair enough: maps should make life less, not more, confusing, so labelling Shenfield et al. as “special fares apply” rather than zone whatever makes some sense. But why don’t these outer zone fares work the same way as the proper London ones?

“One of the reasons that the fare structure becomes much more complicated when you travel to stations beyond the Zone 6 boundary is that the various Train Operating Companies (TOCs) are responsible for setting the fares to and from their stations outside London. This means that they do not have to follow the standard TfL zonal fares and can mean that stations that are notionally indicated as being in the same fare zone for capping purposes may actually have very different charges for journeys to/from London."

In other words, these fares have been designed to fit in with pre-existing TOC charges. Greater Anglia would get a bit miffed if TfL unilaterally decided that Shenfield was zone 8, thus costing the TOC a whole pile of revenue. So it gets a higher, largely notional fare zone to reflect fares. It’s a mess. No wonder TfL doesn't tell us about them.

These “ghost zones”, as the South East Rail Group terms them, will actually be extending yet further. Zone 15 is reserved for some of the western-most Elizabeth line stations out to Reading, when that finally joins the system. Although whether the residents of zone 12 will one day follow in the venerable London tradition of looking down on the residents of zones 13-15 remains to be seen.

Jonn Elledge was the founding editor of CityMetric. He is on Twitter as @jonnelledge and on Facebook as JonnElledgeWrites.