The Georgian vicar whose ideas could have saved Thameslink passengers from misery

London Blackfriars: not a Thameslink train in sight. Image: Getty.

The Reverend Thomas Bayes was born in Hemel Hempstead, Hertfordshire, in 1701. He grew up in London’s Southwark, and died in Tunbridge Wells, Kent in 1761. Had he lived 300 years later, a railway running from Hertfordshire to Kent via London Bridge would have been rather useful to him. And if the people who currently run that railway had paid more attention to him, everyone on the route would be a lot happier.

The Thameslink service links commuter towns to the north and south of London via the city centre. After a major timetable change this May, the network descended into chaos. Instead of the intended massive increase in services, the service through London collapsed.

Things got so bad that Govia Thameslink Railway (GTR) had to hire extra security staff to defend train crew from angry passengers. GTR’s CEO announced his resignation, although he’ll stay in place until the company finds someone willing to take on the poisoned chalice.

So what happened? First, some background. In the 1980s, British Rail (BR) reopened a disused freight line across London. This allowed BR to shift commuter services away from terminal stations, and free up peak hour space at St Pancras and Blackfriars.

This scheme worked so well that the railway went for a second round. This programme was called Thameslink 2000, after the year it was supposed to be finished. It’s nearly finished now (that’s another story). The timetable change was supposed to benefit from the new infrastructure.


Instead it collapsed. London Reconnections has outlined the underlying issues: in short, new trains were delivered late, so drivers didn’t know how to drive them; when GTR took over the franchise in 2014 the previous operator hadn’t been training new drivers, so it’s been playing catch-up; GTR’s training programme relies on drivers working overtime, which many of them don’t want to do; some new tunnels didn’t get handed over until far too late; and GTR didn’t transfer drivers to new depots in time. This meant that many drivers weren’t qualified to drive the new trains along the new routes in time for the change.

Some people might have decided to cancel at this point. But GTR had a cunning plan.

For a train to carry passengers, it needs to have a driver qualified to drive the route that it’s on, a driver qualified to drive the train, and a driver qualified to carry passengers. These don’t have to be the same person, so if you must, you can have three people in the cab, one of whom is qualified to do each. This isn’t ideal; but it’s safe, and it works.

GTR worked out that – between the drivers it had who were trained on the new trains, the drivers it had who were trained on the new routes, and the not-passenger-qualified drivers who had tested the new trains before they entered passenger service – it had enough drivers to run the new timetable by doubling or tripling up in the cab.

But it didn’t. Which is where the Reverend Bayes comes in.

The Reverend Thomas Bayes. Image: Wikimedia Commons.

If you’re working out the number of drivers you need based on traditional probabilities (statisticians call this ‘frequentism’), you look at five factors: the total number of trains needed, the number of drivers qualified for each part of the route, the numbers qualified for the right trains, the number qualified to carry passengers, and sickness/absenteeism rates.

Then you can work out the number of trains to run, based on the number of people likely to be around and qualified. On the evidence we’ve seen so far, GTR appear to have done this, and found that they were, narrowly, capable of running the service.

But there’s a problem here: people don’t come in percentages. Either you have a whole train driver or no train driver at all. And if you don’t have a train driver qualified to drive the train to Finsbury Park when it arrives at London Bridge at 7:30am on a Monday, then your whole timetable is stuffed.

Agent-based modelling is a more complicated way of looking at things than simple probability. But it has a huge advantage over simple statistical models, which is that it can deal with lumpy problems like train drivers. It requires a lot of hard maths, of the sort pioneered by the Reverend Bayes.

You use this maths to set up simulations of what will happen if you try and run the trains you have on the routes you have, using the drivers who you have. So your computer becomes a gigantic nerdy train simulator game, running the entire train timetable thousands of times, and seeing what happens each time you try to run it.

The conditions are slightly different each time: on run 3, the driver who’s off sick is Alan from Luton who is qualified to drive to Brighton but not Maidstone; on run 15, it’s Barbara from Brighton, who is qualified to drive to London Bridge but not Cambridge. The closer you can match the simulated agents to your real roster, the more accurate the simulation is.


Using this model, GTR would have found that having the right number of qualified crew is no use in itself: one person in the wrong place at the wrong time can make the whole thing fall over, even if there’s another qualified person on shift, because that qualified person is an hour’s cab ride away.

Because they didn’t do this kind of modelling, they took false reassurance from their data showing that they had enough crew. The first time their assumptions were put to the test was the first day of the real timetable – when it all fell to pieces.

If GTR had used agent-based modelling to test the new timetable, they would have had to ditch it at the last minute, which would have been horribly embarrassing. Maybe that’s why they didn’t do it. But looking back, it would have been much less embarrassing than what actually happened.

Want more of this stuff? Follow CityMetric on Twitter or Facebook.   

 
 
 
 

London’s rail and tube map is out of control

Aaaaaargh. Image: Getty.

The geographical limits of London’s official rail maps have always been slightly arbitrary. Far-flung commuter towns like Amersham, Chesham and Epping are all on there, because they have tube stations. Meanwhile, places like Esher or Walton-on-Thames – much closer to the city proper, inside the M25, and a contiguous part of the built up area – aren’t, because they fall outside the Greater London and aren’t served by Transport for London (TfL) services. This is pretty aggravating, but we are where we are.

But then a few years ago, TfL decided to show more non-London services on its combined Tube & Rail Map. It started with a few stations slightly outside the city limits, but where you could you use your Oyster card. Then said card started being accepted at Gatwick Airport station – and so, since how to get to a major airport is a fairly useful piece of information to impart to passengers, TfL’s cartographers added that line too, even though it meant including stations bloody miles away.

And now the latest version seems to have cast all logic to the wind. Look at this:

Oh, no. Click to expand. Image: TfL.

The logic for including the line to Reading is that it’s now served by TfL Rail, a route which will be part of the Elizabeth Line/Crossrail, when they eventually, finally happen. But you can tell something’s gone wrong here from the fact that showing the route, to a town which is well known for being directly west of London, requires an awkward right-angle which makes it look like the line turns north, presumably because otherwise there’d be no way of showing it on the map.

What’s more, this means that a station 36 miles from central London gets to be on the map, while Esher – barely a third of that distance out – doesn’t. Nor does Windsor & Eton Central, because it’s served by a branchline from Slough rather than TfL Rail trains, even though as a fairly major tourist destination it’d probably be the sort of place that at least some users of this map might want to know how to get to.

There’s more. Luton Airport Parkway is now on the map, presumably on the basis that Gatwick is. But that station doesn’t accept Oyster cards yet, so you get this:

Gah. Click to expand. Image: TfL.

There’s a line, incidentally, between Watford Junction and St Albans Abbey, which is just down the road from St Albans City. Is that line shown on the map? No it is not.

Also not shown on the map: either Luton itself, just one stop up the line from Luton Airport Parkway, or Stansted Airport, even though it’s an airport and not much further out than places which are on the map. Somewhere that is, however, is Welwyn Garden City, which doesn’t accept Oyster, isn’t served by TfL trains and also – this feels important – isn’t an airport.

And meanwhile a large chunk of Surrey suburbia inside the M25 isn’t shown, even though it must have a greater claim to be a part of London’s rail network than bloody Reading.

The result of all these decisions is that the map covers an entirely baffling area whose shape makes no sense whatsoever. Here’s an extremely rough map:

Just, what? Image: Google Maps/CityMetric.

I mean that’s just ridiculous isn’t it.

While we’re at it: the latest version shows the piers from which you can get boats on the Thames. Except for when it doesn’t because they’re not near a station – for example, Greenland Pier, just across the Thames to the west of the Isle of Dogs, shown here with CityMetric’s usual artistic flair.

Spot the missing pier. You can’t, because it’s missing. Image: TfL/CityMetric.

I’m sure there must be a logic to all of this. It’s just that I fear the logic is “what makes life easier for the TfL cartography team” rather than “what is actually valuable information for London’s rail passengers”.

And don’t even get me started on this monstrosity.

Jonn Elledge is the editor of CityMetric. He is on Twitter as @jonnelledge and on Facebook as JonnElledgeWrites.