Free public transport won’t work – unless we get rid of the drivers

Gissa lift mate. Image: Fraser Elliott/creative commons.

The idea of free public transport has clear appeal. Cities in France; and Germany; are already considering such proposals, to reduce traffic and air pollution. And in the UK, Labour party leader Jeremy Corbyn declared that he would introduce free bus travel for under-25s, to complement the passes already available to senior citizens.

But the evidence suggests that offering free public transport causes headaches for local authorities – and may not be an effective way of getting commuters to stop driving cars. Tallinn, capital of Estonia, introduced free public transport for residents in 2013. But a 2014 survey showed that most of the people who switched to public transport had previously walked or cycled, rather than driven. A further survey in 2017 showed that patronage had increased by only 20 per cent over four years.

The April 2018 edition of German trade publication Stadtverkehr claims that the only cost effective way to get car drivers to switch to public transport is to couple reasonably priced transit with severe traffic restraints. For example, in the English city of Sheffield, attractive bus fares and timetables used to keep cars out of the city centre. From the 1970s, until the service was deregulated in 1986, there was simply no need for residents to drive into Sheffield.

Finding the funds

The biggest drawback to free public transport schemes is the lack of funds from fares to cover maintenance and upgrades. In Tallinn, for example, the city’s inadequate tram system will eventually require capital for a complete renewal – or face closure. Hasselt, a Belgian town with a population of 70,000, offered free bus travel for 16 years until 2013, but eventually scrapped it when costs became unsustainable.

Paris, meanwhile, has already banned the most polluting vehicles and offered free public transport for a few days each year when pollution has reached dangerous levels due to atmospheric conditions. But according to an article in the June 2018 edition of Today’s Railways EU, traffic is rarely reduced more than 10 per cent on these days, and the long term shift to other forms of transport is minimal.

In the UK, free bus travel for senior citizens has hastened the demise of many rural and intercity services. Many local authorities have diverted support away from rural, evening and weekend services, to the concessionary fares budget. During interviews with BBC Radio 4, younger people – who rely on buses to get to work or go out on the evenings and weekends – complained that services had been axed to offer senior citizens free travel during daytime on weekdays.

But irrespective of your age, health or prosperity, there is no point in having a free bus pass if there are no buses to use it on. As bus services are further deregulated in the UK, there will continue to be pointless oversupply on some corridors, while other areas struggle to see more than a few buses per week – if any at all.


Driverless minibuses

The development of autonomous electric minibuses could be a game changer, especially if a manufacturer is prepared to lease them on favourable terms. Local authorities could pilot a scheme whereby the bus is “hailed” by smart phone 15 to 30 minutes before departure. Indeed, tests for autonomous on-demand services are already underway in cities across the US, UK; and Europe;.

Once the expensive and restrictive labour element is removed from the operating costs, there is no reason why such services could not be offered free of charge to all users. In the urban core – within a 10km radius of a city centre – these services could run 24/7. Further afield, in the suburbs, a daily service from 6am until midnight would probably be sufficient to compete with the private car.

Autonomous minibuses could automatically connect with city buses and trains, which would continue to be staffed and paid for by fares. The minibuses would provide a “last mile” service, taking people within easy walking distance of their destination. In urban areas, all residential and business premises would be within 200m of a minibus stop, extending to 500m in suburban areas and 1km in rural areas.

At off peak times, the minibuses could replace some conventional bus services to avoid the inefficiencies created when a 70 passenger bus is used to transport only ten people on an evening or Sunday service.

To prevent abuse of the minibuses, passengers would scan their phones on boarding to confirm the booking. If they didn’t, a penalty could be collected automatically from their phone. CCTV could identify any disruptive passengers and refuse further bookings. Meanwhile, taxis would continue to prosper from those people willing to pay for a personal door-to-door service.

Public transit systems, as we know them today, would struggle to deliver a sustainable free service. But there’s a real possibility that the autonomous vehicles of tomorrow could do just that.

John Disney, Senior Lecturer, Nottingham Business School, Nottingham Trent University.

This article was originally published on The Conversation. Read the original article.

 
 
 
 

Uncertainty is the new normal: the case for resilience in infrastructure

Members of the New York Urban Search and Rescue Task Force One help evacuate people from their homes in Fayetteville, North Carolina, in September 2018. Image: Getty.

The most recent international report on climate change paints a picture of disruption to society unless there are drastic and rapid cuts in greenhouse gas emissions. And although it’s early days, some cities and municipalities are starting to recognise that past conditions can no longer serve as reasonable proxies for the future.

This is particularly true for America’s infrastructure. Highways, water treatment facilities and the power grid are at increasing risk to extreme weather events and other effects of a changing climate.

The problem is that most infrastructure projects, including the Trump administration’s infrastructure revitalisation plan, typically ignore the risks of climate change.

In our work researching sustainability and infrastructure, we encourage and are starting to shift toward designing man-made infrastructure systems with adaptability in mind.

Designing for the past

Infrastructure systems are the front line of defense against flooding, heat, wildfires, hurricanes and other disasters. City planners and citizens often assume that what is built today will continue to function in the face of these hazards, allowing services to continue and to protect us as they have done so in the past. But these systems are designed based on histories of extreme events.

Pumps, for example, are sized based on historical precipitation events. Transmission lines are designed within limits of how much power they can move while maintaining safe operating conditions relative to air temperatures. Bridges are designed to be able to withstand certain flow rates in the rivers they cross. Infrastructure and the environment are intimately connected.

Now, however, the country is more frequently exceeding these historical conditions and is expected to see more frequent and intense extreme weather events. Said another way, because of climate change, natural systems are now changing faster than infrastructure.

How can infrastructure systems adapt? First let’s consider the reasons infrastructure systems fail at extremes:

  • The hazard exceeds design tolerances. This was the case of Interstate 10 flooding in Phoenix in fall 2014, where the intensity of the rainfall exceeded design conditions.

  • During these times there is less extra capacity across the system: When something goes wrong there are fewer options for managing the stressor, such as rerouting flows, whether it’s water, electricity or even traffic.

  • We often demand the most from our infrastructure during extreme events, pushing systems at a time when there is little extra capacity.

Gradual change also presents serious problems, partly because there is no distinguishing event that spurs a call to action. This type of situation can be especially troublesome in the context of maintenance backlogs and budget shortfalls which currently plague many infrastructure systems. Will cities and towns be lulled into complacency only to find that their long-lifetime infrastructure are no longer operating like they should?

Currently the default seems to be securing funding to build more of what we’ve had for the past century. But infrastructure managers should take a step back and ask what our infrastructure systems need to do for us into the future.


Agile and flexible by design

Fundamentally new approaches are needed to meet the challenges not only of a changing climate, but also of disruptive technologies.

These include increasing integration of information and communication technologies, which raises the risk of cyberattacks. Other emerging technologies include autonomous vehicles and drones as well as intermittent renewable energy and battery storage in the place of conventional power systems. Also, digitally connected technologies fundamentally alter individuals’ cognition of the world around us: consider how our mobile devices can now reroute us in ways that we don’t fully understand based on our own travel behavior and traffic across a region.

Yet our current infrastructure design paradigms emphasise large centralized systems intended to last for decades and that can withstand environmental hazards to a preselected level of risk. The problem is that the level of risk is now uncertain because the climate is changing, sometimes in ways that are not very well-understood. As such, extreme events forecasts may be a little or a lot worse.

Given this uncertainty, agility and flexibility should be central to our infrastructure design. In our research, we’ve seen how a number of cities have adopted principles to advance these goals already, and the benefits they provide.

A ‘smart’ tunnel in Kuala Lumpur is designed to supplement the city’s stormwater drainage system. Image: David Boey/creative commons.

In Kuala Lampur, traffic tunnels are able to transition to stormwater management during intense precipitation events, an example of multifunctionality.

Across the U.S., citizen-based smartphone technologies are beginning to provide real-time insights. For instance, the CrowdHydrology project uses flooding data submitted by citizens that the limited conventional sensors cannot collect.

Infrastructure designers and managers in a number of U.S. locations, including New York, Portland, Miami and Southeast Florida, and Chicago, are now required to plan for this uncertain future – a process called roadmapping. For example, Miami has developed a $500m plan to upgrade infrastructure, including installing new pumping capacity and raising roads to protect at-risk oceanfront property.

These competencies align with resilience-based thinking and move the country away from our default approaches of simply building bigger, stronger or more redundant.

Planning for uncertainty

Because there is now more uncertainty with regard to hazards, resilience instead of risk should be central to infrastructure design and operation in the future. Resilience means systems can withstand extreme weather events and come back into operation quickly.

Microgrid technology allows individual buildings to operate in the event of a broader power outage and is one way to make the electricity system more resilient. Image: Amy Vaughn/U.S. Department of Energy/creative commons.

This means infrastructure planners cannot simply change their design parameter – for example, building to withstand a 1,000-year event instead of a 100-year event. Even if we could accurately predict what these new risk levels should be for the coming century, is it technically, financially or politically feasible to build these more robust systems?

This is why resilience-based approaches are needed that emphasise the capacity to adapt. Conventional approaches emphasise robustness, such as building a levee that is able to withstand a certain amount of sea level rise. These approaches are necessary but given the uncertainty in risk we need other strategies in our arsenal.

For example, providing infrastructure services through alternative means when our primary infrastructure fail, such as deploying microgrids ahead of hurricanes. Or, planners can design infrastructure systems such that when they fail, the consequences to human life and the economy are minimised.

The Netherlands has changed its system of dykes and flood management in certain areas to better sustain flooding.

This is a practice recently implemented in the Netherlands, where the Rhine delta rivers are allowed to flood but people are not allowed to live in the flood plain and farmers are compensated when their crops are lost.

Uncertainty is the new normal, and reliability hinges on positioning infrastructure to operate in and adapt to this uncertainty. If the country continues to commit to building last century’s infrastructure, we can continue to expect failures of these critical systems, and the losses that come along with them.

The Conversation

Mikhail Chester, Associate Professor of Civil, Environmental, and Sustainable Engineering, Arizona State University; Braden Allenby, President's Professor and Lincoln Professor of Engineering and Ethics, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, and Samuel Markolf, Postdoctoral Research Associate, Urban Resilience to Extremes Sustainability Research Network, Arizona State University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.