Are self-driving cars safe, and four other questions about autonomous vehicles

Inevitable stock pic, from somewhere in the Netherlands. Image: Getty.

Cars are changing – fast. But are innovations such as autonomous and flying cars a bright new dawn, or just a wild pipe dream? And if they become the future’s way of getting from A to B, can we trust them to take us there safely? Here are five key questions answered by an expert.

Are self-driving cars safe?

At present, the general public doesn’t trust the concept of autonomous vehicles. In a recent survey, 15 per cent of the US public said they don’t believe there will ever be an autonomous vehicle on the market, and 42 per cent said they would never ride in a fully automated vehicle. In addition, 56 per cent of those surveyed would demand 100 per cent safety before they would take a ride, and 60 per cent said they’d demand the same level of safety – 100 per cent – before letting a family member step into a fully autonomous vehicle.

But is this fair? The Eno Center for Transportation, a non-profit, independent think tank in Washington DC, has commented that “driver error is believed to be the main reason behind over 90 per cent of all crashes”. Replacing driver-controlled cars with autonomous ones could result in far safer road travel.

To get to this point, however, all the vehicles on the road would have to be autonomous. It may be many years before this is the case, with a survey claiming that by 2034, autonomous vehicles will make up just 10 per cent of all vehicles being bought and sold.

So, we know that this will take some time and, in the interim, there will be a mix of fully autonomous, partially autonomous and non-autonomous vehicles on the roads. This has the potential to cause problems. For example, cyclists or pedestrians crossing the road may make misplaced assumptions about a vehicle’s capability to detect them.

We need to be certain that autonomous vehicles will be safe and reliable, and there is still some way to go. There have already been a handful of cases where autonomous vehicles have killed or seriously injured other road users when they did not act as predicted in certain traffic scenarios.

Autonomous vehicles will also only be able to operate on certain roads where appropriate infrastructure is in place – for example, road markings and signs – so that the vehicle can “read” the road and know what to do in different situations.

Without these, the vehicle will either give up and shut down altogether (leaving its occupants stranded), hand control to the driver (thereby defeating the object of vehicle autonomy), or do something entirely unpredictable and possibly disastrous.

Will cars change shape?

Vehicles may become multi-purpose spaces in the years ahead, enabling occupants to perform a number of different tasks while being transported from one place to another.

It’s possible to imagine situations where cars become “offices on wheels” in which the occupants can work normally, hold meetings in transit, or even relax and recline during breaks. This will mean that the entire interior space will need to be redesigned to allow these types of activities. In turn, this could mean wider, taller and bigger vehicles, which will have further implications for road design.

What about flying cars?

There is plenty of space above us that is not currently used by aircraft, so the concept of flying cars has some merit. After all, it would potentially prevent many of the conventional problems associated with road traffic, especially congestion.

It could also be a very fast form of mobility. Flying vehicles would not be constrained by traffic controls, junctions and roundabouts. Another significant consideration would be financial; if all vehicles could fly, theoretically we would need far fewer roads, saving building and maintenance costs.

But the whole concept of flying cars would have to be regulated, or there would be no end of mid-air collisions. The consequences of these would potentially be much worse than crashes on the ground since debris falling from the sky would injure and kill people. Indeed, every mid-air collision would almost certainly have fatal implications.

Perhaps we could imagine dedicated “air corridors” controlled by on-ground traffic controllers who would work in the same way as traditional air traffic controllers. Regulation in this scenario would be essential, and it could be that the whole concept is limited to private professional operators running sky-based taxi services or transporting goods around cities. Numbers, after all, would have to be tightly controlled.

It is hard to see how members of the public would be allowed to simply purchase a flying car and drive it off the showroom forecourt. Finally, there are environmental issues, as some of the vehicles are likely to be powered by fossil-based fuels in order to achieve the necessary thrust – although the potential for electric-powered vehicles is also being explored.

And how about future driving tests?

As the motorist’s task will change from driver to monitor, it’s possible to envisage that the whole task will need to be regulated by some form of vehicle controller licence. “Controllers” (as opposed to “drivers”) will need to learn much more about the vehicle’s capabilities and limitations and will need to know what to do in emergency situations in which they may need to assume control. So, the task of controller might require twice as much knowledge as a conventional driver and the driving tests will need to evolve to reflect this.

Will all cars soon be computer-controlled?

All new cars are already computer-controlled to some degree. When a modern car has a defect, the normal procedure for finding out what is wrong involves a diagnostic test. This test relies on a computer system that links to the vehicle’s computer processor, sensors, and microchips, logging any problems or issues. It can reveal flaws including problems with the exhaust, transmission, oil tank and other systems.

It is only a relatively small step from vehicle diagnostics to vehicle control and computing capability is already present on many vehicles for functionalities such as automatic cruise control, auto-parking, and advanced or autonomous emergency braking systems. The computer systems on future cars are likely to become extremely sophisticated.

As a result, autonomous vehicles are going to be very expensive compared to non-autonomous vehicles for the first few years after introduction. This may impede widespread uptake, as is presently the case with electric vehicles.

The Conversation

Andrew Morris, Professor of Human Factors in Transport Safety, Loughborough University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.


To build its emerging “megaregions”, the USA should turn to trains

Under construction: high speed rail in California. Image: Getty.

An extract from “Designing the Megaregion: Meeting Urban Challenges at a New Scale”, out now from Island Press.

A regional transportation system does not become balanced until all its parts are operating effectively. Highways, arterial streets, and local streets are essential, and every megaregion has them, although there is often a big backlog of needed repairs, especially for bridges. Airports for long-distance travel are also recognized as essential, and there are major airports in all the evolving megaregions. Both highways and airports are overloaded at peak periods in the megaregions because of gaps in the rest of the transportation system. Predictions for 2040, when the megaregions will be far more developed than they are today, show that there will be much worse traffic congestion and more airport delays.

What is needed to create a better balance? Passenger rail service that is fast enough to be competitive with driving and with some short airplane trips, commuter rail to major employment centers to take some travelers off highways, and improved local transit systems, especially those that make use of exclusive transit rights-of-way, again to reduce the number of cars on highways and arterial roads. Bicycle paths, sidewalks, and pedestrian paths are also important for reducing car trips in neighborhoods and business centers.

Implementing “fast enough” passenger rail

Long-distance Amtrak trains and commuter rail on conventional, unelectrified tracks are powered by diesel locomotives that can attain a maximum permitted speed of 79 miles per hour, which works out to average operating speeds of 30 to 50 miles per hour. At these speeds, trains are not competitive with driving or even short airline flights.

Trains that can attain 110 miles per hour and can operate at average speeds of 70 miles per hour are fast enough to help balance transportation in megaregions. A trip that takes two to three hours by rail can be competitive with a one-hour flight because of the need to allow an hour and a half or more to get to the boarding area through security, plus the time needed to pick up checked baggage. A two-to-three-hour train trip can be competitive with driving when the distance between destinations is more than two hundred miles – particularly for business travelers who want to sit and work on the train. Of course, the trains also have to be frequent enough, and the traveler’s destination needs to be easily reachable from a train station.

An important factor in reaching higher railway speeds is the recent federal law requiring all trains to have a positive train control safety system, where automated devices manage train separation to avoid collisions, as well as to prevent excessive speeds and deal with track repairs and other temporary situations. What are called high-speed trains in the United States, averaging 70 miles per hour, need gate controls at grade crossings, upgraded tracks, and trains with tilt technology – as on the Acela trains – to permit faster speeds around curves. The Virgin Trains in Florida have diesel-electric locomotives with an electrical generator on board that drives the train but is powered by a diesel engine. 

The faster the train needs to operate, the larger, and heavier, these diesel-electric locomotives have to be, setting an effective speed limit on this technology. The faster speeds possible on the portion of Amtrak’s Acela service north of New Haven, Connecticut, came after the entire line was electrified, as engines that get their power from lines along the track can be smaller and much lighter, and thus go faster. Catenary or third-rail electric trains, like Amtrak’s Acela, can attain speeds of 150 miles per hour, but only a few portions of the tracks now permit this, and average operating speeds are much lower.

Possible alternatives to fast enough trains

True electric high-speed rail can attain maximum operating speeds of 150 to 220 miles per hour, with average operating speeds from 120 to 200 miles per hour. These trains need their own grade-separated track structure, which means new alignments, which are expensive to build. In some places the property-acquisition problem may make a new alignment impossible, unless tunnels are used. True high speeds may be attained by the proposed Texas Central train from Dallas to Houston, and on some portions of the California High-Speed Rail line, should it ever be completed. All of the California line is to be electrified, but some sections will be conventional tracks so that average operating speeds will be lower.

Maglev technology is sometimes mentioned as the ultimate solution to attaining high-speed rail travel. A maglev train travels just above a guideway using magnetic levitation and is propelled by electromagnetic energy. There is an operating maglev train connecting the center of Shanghai to its Pudong International Airport. It can reach a top speed of 267 miles per hour, although its average speed is much lower, as the distance is short and most of the trip is spent getting up to speed or decelerating. The Chinese government has not, so far, used this technology in any other application while building a national system of long-distance, high-speed electric trains. However, there has been a recent announcement of a proposed Chinese maglev train that can attain speeds of 375 miles per hour.

The Hyperloop is a proposed technology that would, in theory, permit passenger trains to travel through large tubes from which all air has been evacuated, and would be even faster than today’s highest-speed trains. Elon Musk has formed a company to develop this virtually frictionless mode of travel, which would have speeds to make it competitive with medium- and even long-distance airplane travel. However, the Hyperloop technology is not yet ready to be applied to real travel situations, and the infrastructure to support it, whether an elevated system or a tunnel, will have all the problems of building conventional high-speed rail on separate guideways, and will also be even more expensive, as a tube has to be constructed as well as the train.

Megaregions need fast enough trains now

Even if new technology someday creates long-distance passenger trains with travel times competitive with airplanes, passenger traffic will still benefit from upgrading rail service to fast-enough trains for many of the trips within a megaregion, now and in the future. States already have the responsibility of financing passenger trains in megaregion rail corridors. Section 209 of the federal Passenger Rail Investment and Improvement Act of 2008 requires states to pay 85 percent of operating costs for all Amtrak routes of less than 750 miles (the legislation exempts the Northeast Corridor) as well as capital maintenance costs of the Amtrak equipment they use, plus support costs for such programs as safety and marketing. 

California’s Caltrans and Capitol Corridor Joint Powers Authority, Connecticut, Indiana, Illinois, Maine’s Northern New England Passenger Rail Authority, Massachusetts, Michigan, Missouri, New York, North Carolina, Oklahoma, Oregon, Pennsylvania, Texas, Vermont, Virginia, Washington, and Wisconsin all have agreements with Amtrak to operate their state corridor services. Amtrak has agreements with the freight railroads that own the tracks, and by law, its operations have priority over freight trains.

At present it appears that upgrading these corridor services to fast-enough trains will also be primarily the responsibility of the states, although they may be able to receive federal grants and loans. The track improvements being financed by the State of Michigan are an example of the way a state can take control over rail service. These tracks will eventually be part of 110-mile-per-hour service between Chicago and Detroit, with commitments from not just Michigan but also Illinois and Indiana. Fast-enough service between Chicago and Detroit could become a major organizer in an evolving megaregion, with stops at key cities along the way, including Kalamazoo, Battle Creek, and Ann Arbor. 

Cooperation among states for faster train service requires formal agreements, in this case, the Midwest Interstate Passenger Rail Compact. The participants are Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, and Wisconsin. There is also an advocacy organization to support the objectives of the compact, the Midwest Interstate Passenger Rail Commission.

States could, in future, reach operating agreements with a private company such as Virgin Trains USA, but the private company would have to negotiate its own agreement with the freight railroads, and also negotiate its own dispatching priorities. Virgin Trains says in its prospectus that it can finance track improvements itself. If the Virgin Trains service in Florida proves to be profitable, it could lead to other private investments in fast-enough trains.

Jonathan Barnett is an emeritus Professor of Practice in City and Regional Planning, and former director of the Urban Design Program, at the University of Pennsylvania. 

This is an extract from “Designing the Megaregion: Meeting Urban Challenges at a New Scale”, published now by Island Press. You can find out more here.