Airlines say they’re acting on climate change. The research suggests otherwise

Oh dear. Image: Getty.

If you’re a traveller who cares about reducing your carbon footprint, are some airlines better to fly with than others?

Several of the world’s major airlines have announced plans to become “carbon neutral”, while others are trialling new aviation fuels. But are any of their climate initiatives making much difference?

Those were the questions we set out to answer a year ago, by analysing what the world’s largest 58 airlines – which fly 70 per cent of the total available seat-kilometres – are doing to live up to their promises to cut their climate impact.

The good news? Some airlines are taking positive steps. The bad news? When you compare what’s being done against the continued growth in emissions, even the best airlines are not doing anywhere near enough.

More efficient flights still drive up emissions

Our research found three-quarters of the world’s biggest airlines showed improvements in carbon efficiency – measured as carbon dioxide per available seat. But that’s not the same as cutting emissions overall.

One good example was the Spanish flag carrier Iberia, which reduced emissions per seat by about 6 per cent in 2017, but increased absolute emissions by 7 per cent.

For 2018, compared with 2017, the collective impact of all the climate measures being undertaken by the 58 biggest airlines amounted to an improvement of 1 per cent. This falls short of the industry’s goal of achieving a 1.5 per cent increase in efficiency. And the improvements were more than wiped out by the industry’s overall 5.2 per cent annual increase in emissions.

This challenge is even clearer when you look slightly further back. Industry figures show global airlines produced 733 million tonnes of CO₂ emissions in 2014. Falling fares and more people around wanting to fly saw airline emissions rise 23 per cent in just five years.

What are the airlines doing?

Airlines reported climate initiatives across 22 areas, with the most common involving fleet renewal, engine efficiency, weight reductions and flight path optimisation. Examples in our paper include:

  • Singapore Airlines modified the Trent 900 engines on their A380 aircraft, saving 26,326 tonnes of CO₂ (equivalent to 0.24 per cent of the airline’s annual emissions);
  • KLM’s efforts to reduce weight on board led to a CO₂ reduction of 13,500 tonnes (0.05 per cent of KLM’s emissions).
  • Etihad reports savings of 17,000 tonnes of CO₂ due to flight plan improvements (0.16 per cent of its emissions).

Nineteen of the 58 large airlines I examined invest in alternative fuels. But the scale of their research and development programs, and use of alternative fuels, remains tiny.

As an example, for Earth Day 2018 Air Canada announced a 160-tonne emissions saving from blending 230,000 litres of “biojet” fuel into 22 domestic flights. How much fuel was that? Not even enough to fill the more than 300,000-litre capacity of just one A380 plane.


Carbon neutral promises

Some airlines, including Qantas, are aiming to be carbon neutral by 2050. While that won’t be easy, Qantas is at least starting with better climate reporting; it’s one of only eight airlines addressing its carbon risk through the systematic Task Force on Climate-related Financial Disclosures process.

About half of the major airlines engage in carbon offsetting, but only 13 provide information on measurable impacts. Theses include Air New Zealand, with its FlyNeutral program to help restore native forest in New Zealand.

That lack of detail means the integrity of many offset schemes is questionable. And even if properly managed, offsets still avoid the fact that we can’t make deep carbon cuts if we keep flying at current rates.

What airlines and governments need to do

Our research shows major airlines’ climate efforts are achieving nowhere near enough. To decrease aviation emissions, three major changes are urgently needed.

  • All airlines need to implement all measures across the 22 categories covered in our report to reap any possible gain in efficiency.

  • Far more research is needed to develop alternative aviation fuels that genuinely cut emissions. Given what we’ve seen so far, these are unlikely to be biofuels. E-fuels – liquid fuels derived from carbon dioxide and hydrogen – may provide such a solution, but there are challenges ahead, including high costs.

  • Governments can – and some European countries do – impose carbon taxes and then invest into lower carbon alternatives. They can also provide incentives to develop new fuels and alternative infrastructure, such as rail or electric planes for shorter trips.

How you can make a difference

Our research paper was released late last year, at a World Travel and Tourism Council event linked to the Madrid climate summit. Activist Greta Thunberg famously sailed around the world to be there, rather than flying.

Higher-income travellers from around the world have had a disproportionately large impact in driving up aviation emissions.

This means that all of us who are privileged enough to fly, for work or pleasure, have a role to play too, by:

To really make an impact, far more of us need to do all three. The Conversation

Susanne Becken, Professor of Sustainable Tourism and Director, Griffith Institute for Tourism, Griffith University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

 
 
 
 

To build its emerging “megaregions”, the USA should turn to trains

Under construction: high speed rail in California. Image: Getty.

An extract from “Designing the Megaregion: Meeting Urban Challenges at a New Scale”, out now from Island Press.

A regional transportation system does not become balanced until all its parts are operating effectively. Highways, arterial streets, and local streets are essential, and every megaregion has them, although there is often a big backlog of needed repairs, especially for bridges. Airports for long-distance travel are also recognized as essential, and there are major airports in all the evolving megaregions. Both highways and airports are overloaded at peak periods in the megaregions because of gaps in the rest of the transportation system. Predictions for 2040, when the megaregions will be far more developed than they are today, show that there will be much worse traffic congestion and more airport delays.

What is needed to create a better balance? Passenger rail service that is fast enough to be competitive with driving and with some short airplane trips, commuter rail to major employment centers to take some travelers off highways, and improved local transit systems, especially those that make use of exclusive transit rights-of-way, again to reduce the number of cars on highways and arterial roads. Bicycle paths, sidewalks, and pedestrian paths are also important for reducing car trips in neighborhoods and business centers.

Implementing “fast enough” passenger rail

Long-distance Amtrak trains and commuter rail on conventional, unelectrified tracks are powered by diesel locomotives that can attain a maximum permitted speed of 79 miles per hour, which works out to average operating speeds of 30 to 50 miles per hour. At these speeds, trains are not competitive with driving or even short airline flights.

Trains that can attain 110 miles per hour and can operate at average speeds of 70 miles per hour are fast enough to help balance transportation in megaregions. A trip that takes two to three hours by rail can be competitive with a one-hour flight because of the need to allow an hour and a half or more to get to the boarding area through security, plus the time needed to pick up checked baggage. A two-to-three-hour train trip can be competitive with driving when the distance between destinations is more than two hundred miles – particularly for business travelers who want to sit and work on the train. Of course, the trains also have to be frequent enough, and the traveler’s destination needs to be easily reachable from a train station.

An important factor in reaching higher railway speeds is the recent federal law requiring all trains to have a positive train control safety system, where automated devices manage train separation to avoid collisions, as well as to prevent excessive speeds and deal with track repairs and other temporary situations. What are called high-speed trains in the United States, averaging 70 miles per hour, need gate controls at grade crossings, upgraded tracks, and trains with tilt technology – as on the Acela trains – to permit faster speeds around curves. The Virgin Trains in Florida have diesel-electric locomotives with an electrical generator on board that drives the train but is powered by a diesel engine. 

The faster the train needs to operate, the larger, and heavier, these diesel-electric locomotives have to be, setting an effective speed limit on this technology. The faster speeds possible on the portion of Amtrak’s Acela service north of New Haven, Connecticut, came after the entire line was electrified, as engines that get their power from lines along the track can be smaller and much lighter, and thus go faster. Catenary or third-rail electric trains, like Amtrak’s Acela, can attain speeds of 150 miles per hour, but only a few portions of the tracks now permit this, and average operating speeds are much lower.

Possible alternatives to fast enough trains

True electric high-speed rail can attain maximum operating speeds of 150 to 220 miles per hour, with average operating speeds from 120 to 200 miles per hour. These trains need their own grade-separated track structure, which means new alignments, which are expensive to build. In some places the property-acquisition problem may make a new alignment impossible, unless tunnels are used. True high speeds may be attained by the proposed Texas Central train from Dallas to Houston, and on some portions of the California High-Speed Rail line, should it ever be completed. All of the California line is to be electrified, but some sections will be conventional tracks so that average operating speeds will be lower.


Maglev technology is sometimes mentioned as the ultimate solution to attaining high-speed rail travel. A maglev train travels just above a guideway using magnetic levitation and is propelled by electromagnetic energy. There is an operating maglev train connecting the center of Shanghai to its Pudong International Airport. It can reach a top speed of 267 miles per hour, although its average speed is much lower, as the distance is short and most of the trip is spent getting up to speed or decelerating. The Chinese government has not, so far, used this technology in any other application while building a national system of long-distance, high-speed electric trains. However, there has been a recent announcement of a proposed Chinese maglev train that can attain speeds of 375 miles per hour.

The Hyperloop is a proposed technology that would, in theory, permit passenger trains to travel through large tubes from which all air has been evacuated, and would be even faster than today’s highest-speed trains. Elon Musk has formed a company to develop this virtually frictionless mode of travel, which would have speeds to make it competitive with medium- and even long-distance airplane travel. However, the Hyperloop technology is not yet ready to be applied to real travel situations, and the infrastructure to support it, whether an elevated system or a tunnel, will have all the problems of building conventional high-speed rail on separate guideways, and will also be even more expensive, as a tube has to be constructed as well as the train.

Megaregions need fast enough trains now

Even if new technology someday creates long-distance passenger trains with travel times competitive with airplanes, passenger traffic will still benefit from upgrading rail service to fast-enough trains for many of the trips within a megaregion, now and in the future. States already have the responsibility of financing passenger trains in megaregion rail corridors. Section 209 of the federal Passenger Rail Investment and Improvement Act of 2008 requires states to pay 85 percent of operating costs for all Amtrak routes of less than 750 miles (the legislation exempts the Northeast Corridor) as well as capital maintenance costs of the Amtrak equipment they use, plus support costs for such programs as safety and marketing. 

California’s Caltrans and Capitol Corridor Joint Powers Authority, Connecticut, Indiana, Illinois, Maine’s Northern New England Passenger Rail Authority, Massachusetts, Michigan, Missouri, New York, North Carolina, Oklahoma, Oregon, Pennsylvania, Texas, Vermont, Virginia, Washington, and Wisconsin all have agreements with Amtrak to operate their state corridor services. Amtrak has agreements with the freight railroads that own the tracks, and by law, its operations have priority over freight trains.

At present it appears that upgrading these corridor services to fast-enough trains will also be primarily the responsibility of the states, although they may be able to receive federal grants and loans. The track improvements being financed by the State of Michigan are an example of the way a state can take control over rail service. These tracks will eventually be part of 110-mile-per-hour service between Chicago and Detroit, with commitments from not just Michigan but also Illinois and Indiana. Fast-enough service between Chicago and Detroit could become a major organizer in an evolving megaregion, with stops at key cities along the way, including Kalamazoo, Battle Creek, and Ann Arbor. 

Cooperation among states for faster train service requires formal agreements, in this case, the Midwest Interstate Passenger Rail Compact. The participants are Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, and Wisconsin. There is also an advocacy organization to support the objectives of the compact, the Midwest Interstate Passenger Rail Commission.

States could, in future, reach operating agreements with a private company such as Virgin Trains USA, but the private company would have to negotiate its own agreement with the freight railroads, and also negotiate its own dispatching priorities. Virgin Trains says in its prospectus that it can finance track improvements itself. If the Virgin Trains service in Florida proves to be profitable, it could lead to other private investments in fast-enough trains.

Jonathan Barnett is an emeritus Professor of Practice in City and Regional Planning, and former director of the Urban Design Program, at the University of Pennsylvania. 

This is an extract from “Designing the Megaregion: Meeting Urban Challenges at a New Scale”, published now by Island Press. You can find out more here.