12 things we learned by reading every single National Rail timetable

Some departure boards, yesterday. Image: flickr.com/photos/joshtechfission/ CC-BY-SA

A couple of weeks ago, someone on Twitter asked CityMetric’s editor about the longest possible UK train journey where the stations are all in progressive alphabetical order. Various people made suggestions, but I was intrigued as to what that definitive answer was. Helpfully, National Rail provides a 3,717 page document containing every single timetable in the country, so I got reading!

(Well, actually I let my computer read the raw data in a file provided by ATOC, the Association of Train Operating Companies. Apparently this ‘requires a good level of computer skills’, so I guess I can put that on my CV now.)

Here’s what I learned:

1) The record for stops in progressive alphabetical order within a single journey is: 10

The winner is the weekday 7.42am Arriva Trains Wales service from Bridgend to Aberdare, which stops at the following stations in sequence:

  • Barry, Barry Docks, Cadoxton, Cardiff Central, Cardiff Queen Street, Cathays, Llandaf, Radyr, Taffs Well, Trefforest

The second longest sequence possible – 8 – overlaps with this. It’s the 22:46pm from Cardiff Central to Treherbert, although at present it’s only scheduled to run from 9-12 April, so you’d better book now to avoid the rush. 

  • Cardiff Central, Cardiff Queen Street, Cathays, Llandaf, Radyr, Taffs Well, Trefforest, Trehafod

Not quite sure what you’ll actually be able to do when you get to Trehafod at half eleven. Maybe the Welsh Mining Experience at Rhondda Heritage Park could arrange a special late night event to celebrate.

Just one of the things that you probably won't be able to see in Trehafod. Image: Wikimedia/FruitMonkey.

There are 15 possible runs of 7 stations. They include:

  • Berwick Upon Tweed, Dunbar, Edinburgh, Haymarket, Inverkeithing, Kirkcaldy, Leuchars
  • Bidston, Birkenhead North, Birkenhead Park, Conway Park, Hamilton Square, James Street, Moorfields
  • Bedford, Flitwick, Harlington, Leagrave, Luton, St Albans City, St Pancras International

There is a chance for a bit of CONTROVERSY with the last one, as you could argue that the final station is actually called London St Pancras. But St Pancras International the ATOC data calls it, so if you disagree you should ring them up and shout very loudly about it, I bet they love it when stuff like that happens.

Alphabetical train journeys not exciting enough for you?

2) The longest sequence of stations with alliterative names: 5

There are two ways to do this:

  • Ladywell, Lewisham, London Bridge, London Waterloo (East), London Charing Cross – a sequence which is the end/beginning of a couple of routes in South East London.
  • Mills Hill, Moston, Manchester Victoria, Manchester Oxford Road, Manchester Piccadilly – from the middle of the Leeds-Manchester Airport route.

There are 20 ways to get a sequence of 4, and 117 for a sequence of 3, but there are no train stations in the UK beginning with Z so shut up you at the back there.

3) The longest sequence of stations with names of increasing length: 7

Two of these:

  • York, Leeds, Batley, Dewsbury, Huddersfield, Manchester Victoria, Manchester Oxford Road
  • Lewes, Glynde, Berwick, Polegate, Eastbourne, Hampden Park, Pevensey & Westham

4) The greatest number of stations you can stop at without changing trains: 50

On a veeeeery slow service that calls at every stop between Crewe and Cardiff Central over the course of 6hr20. Faster, albeit less comprehensive, trains are available.

But if you’re looking for a really long journey, that’s got nothing on:


5) The longest journey you can take on a single National Rail service: 13 hours and 58 minutes.

A sleeper service that leaves Inverness at 7.17pm, and arrives at London Euston at 9.15am the next morning. Curiously, the ATOC data appears to claim that it stops at Wembley European Freight Operations Centre, though sadly the National Rail website makes no mention of this once in a lifetime opportunity.

6) The shortest journey you can take on a National Rail service without getting off en route: 2 minutes.

Starting at Wrexham Central, and taking you all the way to Wrexham General, this service is in place for a few days in the last week of March.

7) The shortest complete journey as the crow flies: 0 miles

Because the origin station is the same as the terminating station, i.e. the journey is on a loop.

8) The longest unbroken journey as the crow flies: 505 miles

Taking you all the way from Aberdeen to Penzance – although opportunities to make it have become rarer. The only direct service in the current timetable departs at 8.20am on Saturday 24 March. It stops at 46 stations and takes 13 hours 20 minutes. Thankfully, a trolley service is available.

9) The shortest station names on the network have just 3 letters

Ash, Ayr, Ely, Lee, Lye, Ore, Par, Rye, Wem, and Wye.

There’s also I.B.M., serving an industrial site formerly owned by the tech firm, but the ATOC data includes those full stops so it's not quite as short. Compute that, Deep Blue, you chess twat.

10) The longest station name has 33 letters excluding spaces

Okay, I cheated on this and Googled it – the ATOC data only has space for 26 characters. But for completeness’ sake: it’s Rhoose Cardiff International Airport, with 33 letters.

No, I’m not counting that other, more infamous Welsh one, because it’s listed in the database as Llanfairpwll, which is what it is actually called.

 

This sign is a lie. Image: Cyberinsekt.

11) The highest platform number on the National Rail network is 22

Well, the highest platform number at which anything is currently scheduled to stop at, at least.

12) if yoU gAze lOng into an abYss the abySs alSo gazEs into yOu

Image: author's own.

“For I have seen God face to face, and my life is preserved”, said Thomas.

Ed Jefferson works for the internet and tweets as @edjeff.

Want more of this stuff? Follow CityMetric on Twitter or Facebook.

 
 
 
 

To build its emerging “megaregions”, the USA should turn to trains

Under construction: high speed rail in California. Image: Getty.

An extract from “Designing the Megaregion: Meeting Urban Challenges at a New Scale”, out now from Island Press.

A regional transportation system does not become balanced until all its parts are operating effectively. Highways, arterial streets, and local streets are essential, and every megaregion has them, although there is often a big backlog of needed repairs, especially for bridges. Airports for long-distance travel are also recognized as essential, and there are major airports in all the evolving megaregions. Both highways and airports are overloaded at peak periods in the megaregions because of gaps in the rest of the transportation system. Predictions for 2040, when the megaregions will be far more developed than they are today, show that there will be much worse traffic congestion and more airport delays.

What is needed to create a better balance? Passenger rail service that is fast enough to be competitive with driving and with some short airplane trips, commuter rail to major employment centers to take some travelers off highways, and improved local transit systems, especially those that make use of exclusive transit rights-of-way, again to reduce the number of cars on highways and arterial roads. Bicycle paths, sidewalks, and pedestrian paths are also important for reducing car trips in neighborhoods and business centers.

Implementing “fast enough” passenger rail

Long-distance Amtrak trains and commuter rail on conventional, unelectrified tracks are powered by diesel locomotives that can attain a maximum permitted speed of 79 miles per hour, which works out to average operating speeds of 30 to 50 miles per hour. At these speeds, trains are not competitive with driving or even short airline flights.

Trains that can attain 110 miles per hour and can operate at average speeds of 70 miles per hour are fast enough to help balance transportation in megaregions. A trip that takes two to three hours by rail can be competitive with a one-hour flight because of the need to allow an hour and a half or more to get to the boarding area through security, plus the time needed to pick up checked baggage. A two-to-three-hour train trip can be competitive with driving when the distance between destinations is more than two hundred miles – particularly for business travelers who want to sit and work on the train. Of course, the trains also have to be frequent enough, and the traveler’s destination needs to be easily reachable from a train station.

An important factor in reaching higher railway speeds is the recent federal law requiring all trains to have a positive train control safety system, where automated devices manage train separation to avoid collisions, as well as to prevent excessive speeds and deal with track repairs and other temporary situations. What are called high-speed trains in the United States, averaging 70 miles per hour, need gate controls at grade crossings, upgraded tracks, and trains with tilt technology – as on the Acela trains – to permit faster speeds around curves. The Virgin Trains in Florida have diesel-electric locomotives with an electrical generator on board that drives the train but is powered by a diesel engine. 

The faster the train needs to operate, the larger, and heavier, these diesel-electric locomotives have to be, setting an effective speed limit on this technology. The faster speeds possible on the portion of Amtrak’s Acela service north of New Haven, Connecticut, came after the entire line was electrified, as engines that get their power from lines along the track can be smaller and much lighter, and thus go faster. Catenary or third-rail electric trains, like Amtrak’s Acela, can attain speeds of 150 miles per hour, but only a few portions of the tracks now permit this, and average operating speeds are much lower.

Possible alternatives to fast enough trains

True electric high-speed rail can attain maximum operating speeds of 150 to 220 miles per hour, with average operating speeds from 120 to 200 miles per hour. These trains need their own grade-separated track structure, which means new alignments, which are expensive to build. In some places the property-acquisition problem may make a new alignment impossible, unless tunnels are used. True high speeds may be attained by the proposed Texas Central train from Dallas to Houston, and on some portions of the California High-Speed Rail line, should it ever be completed. All of the California line is to be electrified, but some sections will be conventional tracks so that average operating speeds will be lower.


Maglev technology is sometimes mentioned as the ultimate solution to attaining high-speed rail travel. A maglev train travels just above a guideway using magnetic levitation and is propelled by electromagnetic energy. There is an operating maglev train connecting the center of Shanghai to its Pudong International Airport. It can reach a top speed of 267 miles per hour, although its average speed is much lower, as the distance is short and most of the trip is spent getting up to speed or decelerating. The Chinese government has not, so far, used this technology in any other application while building a national system of long-distance, high-speed electric trains. However, there has been a recent announcement of a proposed Chinese maglev train that can attain speeds of 375 miles per hour.

The Hyperloop is a proposed technology that would, in theory, permit passenger trains to travel through large tubes from which all air has been evacuated, and would be even faster than today’s highest-speed trains. Elon Musk has formed a company to develop this virtually frictionless mode of travel, which would have speeds to make it competitive with medium- and even long-distance airplane travel. However, the Hyperloop technology is not yet ready to be applied to real travel situations, and the infrastructure to support it, whether an elevated system or a tunnel, will have all the problems of building conventional high-speed rail on separate guideways, and will also be even more expensive, as a tube has to be constructed as well as the train.

Megaregions need fast enough trains now

Even if new technology someday creates long-distance passenger trains with travel times competitive with airplanes, passenger traffic will still benefit from upgrading rail service to fast-enough trains for many of the trips within a megaregion, now and in the future. States already have the responsibility of financing passenger trains in megaregion rail corridors. Section 209 of the federal Passenger Rail Investment and Improvement Act of 2008 requires states to pay 85 percent of operating costs for all Amtrak routes of less than 750 miles (the legislation exempts the Northeast Corridor) as well as capital maintenance costs of the Amtrak equipment they use, plus support costs for such programs as safety and marketing. 

California’s Caltrans and Capitol Corridor Joint Powers Authority, Connecticut, Indiana, Illinois, Maine’s Northern New England Passenger Rail Authority, Massachusetts, Michigan, Missouri, New York, North Carolina, Oklahoma, Oregon, Pennsylvania, Texas, Vermont, Virginia, Washington, and Wisconsin all have agreements with Amtrak to operate their state corridor services. Amtrak has agreements with the freight railroads that own the tracks, and by law, its operations have priority over freight trains.

At present it appears that upgrading these corridor services to fast-enough trains will also be primarily the responsibility of the states, although they may be able to receive federal grants and loans. The track improvements being financed by the State of Michigan are an example of the way a state can take control over rail service. These tracks will eventually be part of 110-mile-per-hour service between Chicago and Detroit, with commitments from not just Michigan but also Illinois and Indiana. Fast-enough service between Chicago and Detroit could become a major organizer in an evolving megaregion, with stops at key cities along the way, including Kalamazoo, Battle Creek, and Ann Arbor. 

Cooperation among states for faster train service requires formal agreements, in this case, the Midwest Interstate Passenger Rail Compact. The participants are Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, and Wisconsin. There is also an advocacy organization to support the objectives of the compact, the Midwest Interstate Passenger Rail Commission.

States could, in future, reach operating agreements with a private company such as Virgin Trains USA, but the private company would have to negotiate its own agreement with the freight railroads, and also negotiate its own dispatching priorities. Virgin Trains says in its prospectus that it can finance track improvements itself. If the Virgin Trains service in Florida proves to be profitable, it could lead to other private investments in fast-enough trains.

Jonathan Barnett is an emeritus Professor of Practice in City and Regional Planning, and former director of the Urban Design Program, at the University of Pennsylvania. 

This is an extract from “Designing the Megaregion: Meeting Urban Challenges at a New Scale”, published now by Island Press. You can find out more here.