Scrapping Building Schools for the Future hurt – but it forced Liverpool to rethink its finances

Light breaks through over Liverpool. Image: Getty.

The Labour mayor of Liverpool on life after Building Schools for the Future.

Eight years ago, I picked up the pieces of our bid to have 24 schools in Liverpool rebuilt or renovated as part of the government’s Building Schools for the Future (BSF) programme.

As one of its first acts, the coalition government had scrapped the scheme. The shutters at the Department of Education abruptly came down. Civil servants we had been dealing with stopped returning our calls.

Austerity had already become Whitehall’s official religion and councils simply had to get with the programme. Cuts were coming.

Michael Gove, the then education secretary, appeared on the television and at the dispatch box making light of what, to him, was juicy £55bn slice of departmental spending he could offer up to the Treasury.

The trouble is it came at the expense of the children of Liverpool – and those in dozens of other boroughs – who were left in old, dilapidated and, in many cases, unsafe buildings that had long outlived their purpose. No-one was listening.

Left high and dry, our response was to take matters into our own hands.

We invited our various education partners to sit around the table and thrash out an alternative programme, utilising whatever council funding we could find – and all other government cash we could beg and borrow – to generate our own, localised version of BSF.

The Liverpool Schools Investment Programme was born and over the past decade, £180m has been invested in rebuilding or substantially repairing 24 schools across the city. Around 18,000 pupils in the city are now benefitting from state-of the art classroom facilities, helping with the task of ensuring our children get the best state education possible. For me, it stands as one of my proudest achievements.

However, the broader point is that we have seen public spending delegitimised over the past decade as cuts have hollowed out public services and everything from the benefits system, to the armed forces have felt the effects.


We were originally told ‘the big society’ would fill the gap. Of course, all the jumble sales in the world won’t replace the £444m taken out of our revenue support grant (RSG).

Next year’s spending review – on the back of anaemic growth and the potential shock effects of Brexit – means the situation will get worse, not better. (That’s not even mentioning the total lack of clarity about what happens when the RSG is abolished in 2020.)

There is no reprieve for local authorities, despite Tory-controlled Northamptonshire County Council actually going bust. That’s before we get onto the yawning national financial crisis in adult social care and the £2bn deficit that has opened up in children’s services.

Still, we cannot sit on our hands waiting to be rescued by a friendlier climate in Westminster and have to help ourselves. So that’s what we’re doing.

Our ‘invest to earn’ model sees us relentlessly sweat our assets in order to generate new revenue streams.

Using our capital borrowing powers, we are planning to help Everton football club build a new fit-for-purpose stadium, which will form the centrepiece of a much larger regeneration of 125-acres of our dilapidated north docks area, which have lain dormant since the 1980s. The revenue we will receive, if the deal is agreed – around £7m a year for 25 years – will be put straight back into frontline services.

A new £200m investment programme – again paid for by a mixture of savings and borrowing – will help us deliver a massive step-change in the quality of our roads network.

We have also launched a new municipal housing company, called Foundations, in order to rebalance the housing market in Liverpool. More than two-thirds of the properties in the city are in council tax Band A. This means that, for every one per cent of council tax, we raise just £1.6m. We need a better housing mix across the city to improve the sustainability of our core finances.

Our plans – although ambitious – are also prudent, with auditors from the Local Government Association recently reporting that we have a prudent level of debt and strong internal procedures for managing our finances.

Economic efficiency, then, to deliver social justice. Frankly, we have little choice but to be bold and ambitious in finding practical solutions to the problems that an austerity-led agenda has left us with, as we seek to protect the vulnerable and discharge our broader responsibilities.

For me, though, this journey began with a single, thoughtless swing of the axe from Michael Gove back in 2010.

Joe Anderson is Labour mayor of Liverpool.

 
 
 
 

Uncertainty is the new normal: the case for resilience in infrastructure

Members of the New York Urban Search and Rescue Task Force One help evacuate people from their homes in Fayetteville, North Carolina, in September 2018. Image: Getty.

The most recent international report on climate change paints a picture of disruption to society unless there are drastic and rapid cuts in greenhouse gas emissions. And although it’s early days, some cities and municipalities are starting to recognise that past conditions can no longer serve as reasonable proxies for the future.

This is particularly true for America’s infrastructure. Highways, water treatment facilities and the power grid are at increasing risk to extreme weather events and other effects of a changing climate.

The problem is that most infrastructure projects, including the Trump administration’s infrastructure revitalisation plan, typically ignore the risks of climate change.

In our work researching sustainability and infrastructure, we encourage and are starting to shift toward designing man-made infrastructure systems with adaptability in mind.

Designing for the past

Infrastructure systems are the front line of defense against flooding, heat, wildfires, hurricanes and other disasters. City planners and citizens often assume that what is built today will continue to function in the face of these hazards, allowing services to continue and to protect us as they have done so in the past. But these systems are designed based on histories of extreme events.

Pumps, for example, are sized based on historical precipitation events. Transmission lines are designed within limits of how much power they can move while maintaining safe operating conditions relative to air temperatures. Bridges are designed to be able to withstand certain flow rates in the rivers they cross. Infrastructure and the environment are intimately connected.

Now, however, the country is more frequently exceeding these historical conditions and is expected to see more frequent and intense extreme weather events. Said another way, because of climate change, natural systems are now changing faster than infrastructure.

How can infrastructure systems adapt? First let’s consider the reasons infrastructure systems fail at extremes:

  • The hazard exceeds design tolerances. This was the case of Interstate 10 flooding in Phoenix in fall 2014, where the intensity of the rainfall exceeded design conditions.

  • During these times there is less extra capacity across the system: When something goes wrong there are fewer options for managing the stressor, such as rerouting flows, whether it’s water, electricity or even traffic.

  • We often demand the most from our infrastructure during extreme events, pushing systems at a time when there is little extra capacity.

Gradual change also presents serious problems, partly because there is no distinguishing event that spurs a call to action. This type of situation can be especially troublesome in the context of maintenance backlogs and budget shortfalls which currently plague many infrastructure systems. Will cities and towns be lulled into complacency only to find that their long-lifetime infrastructure are no longer operating like they should?

Currently the default seems to be securing funding to build more of what we’ve had for the past century. But infrastructure managers should take a step back and ask what our infrastructure systems need to do for us into the future.


Agile and flexible by design

Fundamentally new approaches are needed to meet the challenges not only of a changing climate, but also of disruptive technologies.

These include increasing integration of information and communication technologies, which raises the risk of cyberattacks. Other emerging technologies include autonomous vehicles and drones as well as intermittent renewable energy and battery storage in the place of conventional power systems. Also, digitally connected technologies fundamentally alter individuals’ cognition of the world around us: consider how our mobile devices can now reroute us in ways that we don’t fully understand based on our own travel behavior and traffic across a region.

Yet our current infrastructure design paradigms emphasise large centralized systems intended to last for decades and that can withstand environmental hazards to a preselected level of risk. The problem is that the level of risk is now uncertain because the climate is changing, sometimes in ways that are not very well-understood. As such, extreme events forecasts may be a little or a lot worse.

Given this uncertainty, agility and flexibility should be central to our infrastructure design. In our research, we’ve seen how a number of cities have adopted principles to advance these goals already, and the benefits they provide.

A ‘smart’ tunnel in Kuala Lumpur is designed to supplement the city’s stormwater drainage system. Image: David Boey/creative commons.

In Kuala Lampur, traffic tunnels are able to transition to stormwater management during intense precipitation events, an example of multifunctionality.

Across the U.S., citizen-based smartphone technologies are beginning to provide real-time insights. For instance, the CrowdHydrology project uses flooding data submitted by citizens that the limited conventional sensors cannot collect.

Infrastructure designers and managers in a number of U.S. locations, including New York, Portland, Miami and Southeast Florida, and Chicago, are now required to plan for this uncertain future – a process called roadmapping. For example, Miami has developed a $500m plan to upgrade infrastructure, including installing new pumping capacity and raising roads to protect at-risk oceanfront property.

These competencies align with resilience-based thinking and move the country away from our default approaches of simply building bigger, stronger or more redundant.

Planning for uncertainty

Because there is now more uncertainty with regard to hazards, resilience instead of risk should be central to infrastructure design and operation in the future. Resilience means systems can withstand extreme weather events and come back into operation quickly.

Microgrid technology allows individual buildings to operate in the event of a broader power outage and is one way to make the electricity system more resilient. Image: Amy Vaughn/U.S. Department of Energy/creative commons.

This means infrastructure planners cannot simply change their design parameter – for example, building to withstand a 1,000-year event instead of a 100-year event. Even if we could accurately predict what these new risk levels should be for the coming century, is it technically, financially or politically feasible to build these more robust systems?

This is why resilience-based approaches are needed that emphasise the capacity to adapt. Conventional approaches emphasise robustness, such as building a levee that is able to withstand a certain amount of sea level rise. These approaches are necessary but given the uncertainty in risk we need other strategies in our arsenal.

For example, providing infrastructure services through alternative means when our primary infrastructure fail, such as deploying microgrids ahead of hurricanes. Or, planners can design infrastructure systems such that when they fail, the consequences to human life and the economy are minimised.

The Netherlands has changed its system of dykes and flood management in certain areas to better sustain flooding.

This is a practice recently implemented in the Netherlands, where the Rhine delta rivers are allowed to flood but people are not allowed to live in the flood plain and farmers are compensated when their crops are lost.

Uncertainty is the new normal, and reliability hinges on positioning infrastructure to operate in and adapt to this uncertainty. If the country continues to commit to building last century’s infrastructure, we can continue to expect failures of these critical systems, and the losses that come along with them.

The Conversation

Mikhail Chester, Associate Professor of Civil, Environmental, and Sustainable Engineering, Arizona State University; Braden Allenby, President's Professor and Lincoln Professor of Engineering and Ethics, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, and Samuel Markolf, Postdoctoral Research Associate, Urban Resilience to Extremes Sustainability Research Network, Arizona State University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.