Good transport links will be the foundation of new homes for London

Not enough of these. Image: Oli Scarff/Getty.

The latest in the Future of London series, presented by Transport for London.

This time: how can we solve the capital’s housing crisis?

Ask a random group of Londoners what is the biggest challenge for the city and most will agre: housing. People are increasingly being priced out of inner London, and “generation rent” are wondering if and when they will ever be able to get on the property ladder. Recently, we’ve even heard stories of young Londoners relocating to Berlin, where property is cheaper and globally mobile jobs are available.

The problem is being compounded by population growth. London now has 8.6m residents – more than at any time in its history – and is predicted to reach 10m by 2030. That gives the city a monumental challenge: building the homes to house 1.4m more inhabitants when there’s already a housing crisis.


The city has a housing target to build 49,000 homes a year. Meeting that target means building 4,000 homes a month, or one home every 10 minutes.

The next mayor, elected in May 2016, will have to work round the clock to solve the housing crisis. If they don’t, it could cost the economy £35bn over the next 10 years.

The next mayor isn’t going to put a hard hat on, get their shovel out and build the houses themselves, but they will have a good toolbox with which to work. In the UK, London’s mayor has unmatched powers over strategic planning and, crucially, an integrated transport network, to unlock land for development. If combined with a clear vision and leadership from City Hall and supported by national government, London can deliver the homes Londoners need.

One of the pressing questions is deciding where the houses should be built. Mayoral hopefuls are looking at options including building outside the city’s boundaries, capitalising on opportunity areas, densifying parts of inner London and developing town centres in outer London. They are also looking at using parts of public sector-owned land to create homes.

Connecting homes with jobs

For each strategy considered, the next mayor will also need to look at effective transport links, which are fundamental to unlocking housing potential and to London’s economy.

The most productive workers in the country work in central London. The firms they are employed by need to recruit from a wide pool of candidates, with many commuting from across the South East to work there. Seventy-nine per cent of workers in central London travel into work by train, and they travel further than commuters across the rest of Britain.

But the jobs they do are often globally mobile, making the imperative of providing affordable homes even more pressing. Seventy-three per cent of London businesses think that the current housing shortage poses a risk to the city’s economic future. Firms looking for global headquarters will consider risks like that when they look at locating in London.

Economic activity unlocked by Crossrail 2 would deliver a sum more than sufficient to pay half of the scheme’s costs

Meanwhile, firms locating in outer London will also expect their employees and customers to be able to access them easily. This requires an effective road network and connections for people cycling, walking and using local bus services.

Good transport links are therefore vital to unlocking the developments which are needed to address the housing shortage and maintain London’s competitiveness. Crucially, the housing they unlock can help to fund the transport schemes themselves.

Under the capital’s control

The planned extension of the Northern line, running from Kennington to Battersea, is being funded in part by the developers building on the land around it. The area is expected to deliver 16,000 new homes for London. A further 24,000 homes could be built around Old Oak Common, an area set to benefit from improved links on the London Overground and High Speed 2 lines, while new bus and cross-river rail links could unlock 11,000 new homes at Barking Riverside.

Another scheme that could be part-financed by Londoners is Crossrail 2, with the capital funding more than half of the cost of the scheme. Economic activity unlocked by Crossrail 2 would deliver billions of pounds of net additional tax receipts, a sum more than sufficient to pay half of the scheme’s costs. It could support 200,000 new homes across London and the South East, deliver transport and regeneration benefits, and support around 60,000 jobs across the UK during construction.


With the equivalent of two full Tube trains of people being added to London’s population every week, the city cannot afford to let Crossrail 2 sit on the drawing board. If Crossrail 2 is given the go ahead, work could start by 2020 and be finished by 2030. 

London’s next mayor will have the powers to unlock new housing, and will undoubtedly have a strong mandate from voters to do so. By integrating new developments with the existing transport network, improving links and ensuring that the right financing for projects is in place, the next mayor can deliver thousands of new homes.

But their capacity to push forward and finance schemes like Crossrail 2, which could transform housing supply across the city, still lags behind competing cities like Berlin.

To catch up, giving the mayor more powers to plan for the long-term and secure funding, could transform the city – and have a dramatic effect on whether Londoners will face the same challenges in years to come. 

The future of London series is supported by Transport for London, and commissioned by CityMetric. You can see the other articles at the following links:

"What will the capital look like in 20 years time?" The powers the capital needs to thrive

"Data helps us provide better transport": an interview with Shashi Verma, TfL's Director of Customer Experience, about big data and new methods of payment

 
 
 
 

Uncertainty is the new normal: the case for resilience in infrastructure

Members of the New York Urban Search and Rescue Task Force One help evacuate people from their homes in Fayetteville, North Carolina, in September 2018. Image: Getty.

The most recent international report on climate change paints a picture of disruption to society unless there are drastic and rapid cuts in greenhouse gas emissions. And although it’s early days, some cities and municipalities are starting to recognise that past conditions can no longer serve as reasonable proxies for the future.

This is particularly true for America’s infrastructure. Highways, water treatment facilities and the power grid are at increasing risk to extreme weather events and other effects of a changing climate.

The problem is that most infrastructure projects, including the Trump administration’s infrastructure revitalisation plan, typically ignore the risks of climate change.

In our work researching sustainability and infrastructure, we encourage and are starting to shift toward designing man-made infrastructure systems with adaptability in mind.

Designing for the past

Infrastructure systems are the front line of defense against flooding, heat, wildfires, hurricanes and other disasters. City planners and citizens often assume that what is built today will continue to function in the face of these hazards, allowing services to continue and to protect us as they have done so in the past. But these systems are designed based on histories of extreme events.

Pumps, for example, are sized based on historical precipitation events. Transmission lines are designed within limits of how much power they can move while maintaining safe operating conditions relative to air temperatures. Bridges are designed to be able to withstand certain flow rates in the rivers they cross. Infrastructure and the environment are intimately connected.

Now, however, the country is more frequently exceeding these historical conditions and is expected to see more frequent and intense extreme weather events. Said another way, because of climate change, natural systems are now changing faster than infrastructure.

How can infrastructure systems adapt? First let’s consider the reasons infrastructure systems fail at extremes:

  • The hazard exceeds design tolerances. This was the case of Interstate 10 flooding in Phoenix in fall 2014, where the intensity of the rainfall exceeded design conditions.

  • During these times there is less extra capacity across the system: When something goes wrong there are fewer options for managing the stressor, such as rerouting flows, whether it’s water, electricity or even traffic.

  • We often demand the most from our infrastructure during extreme events, pushing systems at a time when there is little extra capacity.

Gradual change also presents serious problems, partly because there is no distinguishing event that spurs a call to action. This type of situation can be especially troublesome in the context of maintenance backlogs and budget shortfalls which currently plague many infrastructure systems. Will cities and towns be lulled into complacency only to find that their long-lifetime infrastructure are no longer operating like they should?

Currently the default seems to be securing funding to build more of what we’ve had for the past century. But infrastructure managers should take a step back and ask what our infrastructure systems need to do for us into the future.


Agile and flexible by design

Fundamentally new approaches are needed to meet the challenges not only of a changing climate, but also of disruptive technologies.

These include increasing integration of information and communication technologies, which raises the risk of cyberattacks. Other emerging technologies include autonomous vehicles and drones as well as intermittent renewable energy and battery storage in the place of conventional power systems. Also, digitally connected technologies fundamentally alter individuals’ cognition of the world around us: consider how our mobile devices can now reroute us in ways that we don’t fully understand based on our own travel behavior and traffic across a region.

Yet our current infrastructure design paradigms emphasise large centralized systems intended to last for decades and that can withstand environmental hazards to a preselected level of risk. The problem is that the level of risk is now uncertain because the climate is changing, sometimes in ways that are not very well-understood. As such, extreme events forecasts may be a little or a lot worse.

Given this uncertainty, agility and flexibility should be central to our infrastructure design. In our research, we’ve seen how a number of cities have adopted principles to advance these goals already, and the benefits they provide.

A ‘smart’ tunnel in Kuala Lumpur is designed to supplement the city’s stormwater drainage system. Image: David Boey/creative commons.

In Kuala Lampur, traffic tunnels are able to transition to stormwater management during intense precipitation events, an example of multifunctionality.

Across the U.S., citizen-based smartphone technologies are beginning to provide real-time insights. For instance, the CrowdHydrology project uses flooding data submitted by citizens that the limited conventional sensors cannot collect.

Infrastructure designers and managers in a number of U.S. locations, including New York, Portland, Miami and Southeast Florida, and Chicago, are now required to plan for this uncertain future – a process called roadmapping. For example, Miami has developed a $500m plan to upgrade infrastructure, including installing new pumping capacity and raising roads to protect at-risk oceanfront property.

These competencies align with resilience-based thinking and move the country away from our default approaches of simply building bigger, stronger or more redundant.

Planning for uncertainty

Because there is now more uncertainty with regard to hazards, resilience instead of risk should be central to infrastructure design and operation in the future. Resilience means systems can withstand extreme weather events and come back into operation quickly.

Microgrid technology allows individual buildings to operate in the event of a broader power outage and is one way to make the electricity system more resilient. Image: Amy Vaughn/U.S. Department of Energy/creative commons.

This means infrastructure planners cannot simply change their design parameter – for example, building to withstand a 1,000-year event instead of a 100-year event. Even if we could accurately predict what these new risk levels should be for the coming century, is it technically, financially or politically feasible to build these more robust systems?

This is why resilience-based approaches are needed that emphasise the capacity to adapt. Conventional approaches emphasise robustness, such as building a levee that is able to withstand a certain amount of sea level rise. These approaches are necessary but given the uncertainty in risk we need other strategies in our arsenal.

For example, providing infrastructure services through alternative means when our primary infrastructure fail, such as deploying microgrids ahead of hurricanes. Or, planners can design infrastructure systems such that when they fail, the consequences to human life and the economy are minimised.

The Netherlands has changed its system of dykes and flood management in certain areas to better sustain flooding.

This is a practice recently implemented in the Netherlands, where the Rhine delta rivers are allowed to flood but people are not allowed to live in the flood plain and farmers are compensated when their crops are lost.

Uncertainty is the new normal, and reliability hinges on positioning infrastructure to operate in and adapt to this uncertainty. If the country continues to commit to building last century’s infrastructure, we can continue to expect failures of these critical systems, and the losses that come along with them.

The Conversation

Mikhail Chester, Associate Professor of Civil, Environmental, and Sustainable Engineering, Arizona State University; Braden Allenby, President's Professor and Lincoln Professor of Engineering and Ethics, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, and Samuel Markolf, Postdoctoral Research Associate, Urban Resilience to Extremes Sustainability Research Network, Arizona State University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.