Chinese cities are using water cannon to clean their air

Beijing’s Tiananmen Square during “dangerous levels” of air pollution in February 2014. Image: Getty.

In the summer months, Chinese cities don’t just get hot: they get smoggy, too. Beijing has long been known as the country’s pollution capital, but data released in March showed that, in 2013, nine other cities suffered more days of smog than the capital. The news prompted Chinese premier Li Keqiang to “declare war” on pollution.

And that war is being fought using cannon.

Over the last few months, pictures have emerged showing giant, hair dryer-like machines, mounted on trucks in the streets of several Chinese cities. These can blow water vapour up to 200 feet into the air: the idea is that water droplets from these “mist cannons” stick to pollution particles, and pull them to the ground.  They come with a hefty price tag: most cost city governments between 700,000 and 900,000 yuan (that’s $113,500-$146,000).

The cities that have made greatest use of the cannon seem to be those of Heibei, the province south of Beijing, where many of the cities with the worst pollution are located. Here’s one in Zhangjiakou:

zhangjiakou.jpg

Image: Xinhua.

Unfortunately for city governments and their war on pollution, Pan Xiaochuan, an environmental expert from Peking University, told Xinhua last month that the cannons aren’t actually very effective. The machine can reduce pollutants for a short time after the water is sprayed, he said – but “its effects don’t last long”. And then the cannon moves on, to another location: it offers, at best, a moment of relief.

Despite this, the cannons are still being used: Chongqing started using one just last week, though city officials say it was hired to fight “summer heat”, not smog.

Peoples Dail.png

Chongqing’s new cannon. Image: People’s Daily.

In other words, they’ve basically spent around 750,000 yuan ($121,500) on a movable sprinkler to keep the city cool. Can’t argue with that.

 
 
 
 

The mountain in North Wales that tried to stop the UK’s blackout

Elidir Fawr, the mountain in question. Image: Jem Collins.

Last Friday, the UK’s National Grid turned to mush. Not the official term perhaps, but an accurate one after nearly one million people were left without power across the country, with hundreds more stranded at train stations – or even on trains (which isn’t nearly as fun as it might immediately sound). 

Traffic lights stopped working, back-up power failed in hospitals, and business secretary Andrea Leadsom launched an investigation into exactly what happened. So far though, the long and short of it is that a gas-fired power station in Bedfordshire failed just before 5 o’clock, followed just two minutes later by Hornsea offshore wind farm. 

However, amid the resulting chaos and inevitable search to find someone to blame for the outage, a set of mountains (yes, mountains) in North Wales were working extremely hard to keep the lights on.

From the outside, Elidir Fawr, doesn’t scream power generation. Sitting across from the slightly better known Mount Snowdon, it actually seems quite passive. After all, it is a mountain, and the last slate quarry in the area closed in 1969.

At a push, you’d probably guess the buildings at the base of the mountain were something to do with the area’s industrial past, mostly thanks to the blasting scars on its side, as I did when I first walked past last Saturday. 

But, buried deep into Elidir Fawr is the ability to generate an astounding 1,728 megawatts of electricity – enough to power 2.5 million homes, more than the entire population of the Liverpool region. And the plant is capable of running for five hours.

Dubbed by locals at the ‘Electric Mountain’, Dinorwig Power Station, is made up of 16km of underground tunnels (complete with their own traffic light system), in an excavation which could easily house St Paul’s Cathedral.

Instead, it’s home to six reversible pumps/turbines which are capable of reaching full capacity in just 16 seconds. Which is probably best, as Londoners would miss the view.

‘A Back-Up Facility for The National Grid’

And, just as it often is, the Electric Mountain was called into action on Friday. A spokesperson for First Hydro Company, which owns the generators at Dinorwig, and the slightly smaller Ffestiniog, both in Snowdonia, confirmed that last Friday they’d been asked to start generating by the National Grid.

But just how does a mountain help to ease the effects of a blackout? Or as it’s more regularly used, when there’s a surge in demand for electricity – most commonly when we all pop the kettle on at half-time during the World Cup, scientifically known as TV pick-up.

The answer lies in the lakes at both the top and bottom of Elidir Fawr. Marchlyn Mawr, at the top of the mountain, houses an incredible 7 million tonnes of water, which can be fed down through the mountain to the lake at the bottom, Llyn Peris, generating electricity as it goes.


“Pumped storage technology enables dynamic response electricity production – ofering a critical back-up facility during periods of mismatched supply and demand on the national grid system,” First Hydro Company explains.

The tech works essentially the same way as conventional hydro power – or if you want to be retro, a spruced up waterwheel. When the plant releases water from the upper reservoir, as well as having gravity on their side (the lakes are half a kilometre apart vertically) the water shafts become smaller and smaller, further ramping up the pressure. 

This, in turn, spins the turbines which are linked to the generators, with valves regulating the water flow. Unlike traditional UK power stations, which can take hours to get to full capacity, at Dinorwig it’s a matter of 16 seconds from a cold start, or as little as five if the plant is on standby.

And, designed with the UK’s 50hz frequency in mind, the generator is also built to shut off quickly and avoid overloading the network. Despite the immense water pressure, the valves are able to close off the supply within just 20 seconds. 

At night, the same thing simply happens in reverse, as low-cost, surplus energy from the grid is used to pump the water back up to where it came from, ready for another day of hectic TV scheduling. Or blackouts, take your pick.

Completed in 1984, the power station was the product of a decade of work, and the largest civil engineering project commissioned at the time – and it remains one of Europe’s largest manmade caverns. Not that you’d know it from the outside. And really, if we’ve learned anything from this, it’s that looks can be deceiving, and that mountains can actually be really damn good at making electricity. 

Jem Collins is a digital journalist and editor whose work focuses on human rights, rural stories and careers. She’s the founder and editor of Journo Resources, and you can also find her tweeting @Jem_Collins.