What will the city of the future look like?

Indian visitors look at a model of a 'smart city' at the Smartcity Expo in New Delhi on 20 May 2015. Image: Getty.

The city of the future is a highly interconnected smart environment where people, government and business operate in symbiosis with spectacular improving technologies such as big data, the Internet of Things (IoT), artificial intelligence (AI), robots, drones, autonomous green vehicles, 3D / 4D printing, and renewable energy.

Simultaneously, it is also a place where surveillance is pervasive and data capture is considered permissible by city residents.

At their heart, smart cities are designed to capture massive amounts of data about the population and its patterns, and use it to inform decision making. This information gathering results in what is called big data, and it is essentially gathered via surveillance.

It is collated from a constantly evolving and expanding IoT – encompassing traffic lights and cameras, pollution sensors, building control systems, and personal devices – all feeding giant data stores held in the cloud. The ability to crunch all this data is becoming easier due to rampant growth in the use of devices algorithms, AI, and predictive software.

Singapore is a leading example of a smart city, and is constantly evolving its “city brain,” a backbone of technologies used to help control pollution, monitor traffic, allocate parking, communicate with citizens, and even issue traffic fines. The behavioral aspect is not to be overlooked. Singapore’s “brain” is attempting to modify human behavior – for example, one system rewards drivers for using recommended mapped routes, and punishes those who do not.

Ultimately, Singapore’s planners hope to discourage driving, and guide most commuters to making greater use of public transportation. The city is planning for 100m “smart objects” including smart traffic lights, lamp posts, sensors, and cameras on its roadways, which will be used to monitor and enforce laws.


Essentially the Internet of Things means that everything – and potentially everyone – will become beacons and data collection devices. Hence, after data, the IoT is the second driving force behind the rise of smart infrastructure; in order for everything from air conditioning to parking meters to function in a smart city, the use of microphones, sensors, voice recognition, etc. must be hooked up to the IoT.

Companies and planners are already beginning to explore the possibilities; a case study from India suggests that light poles along the highways can offer both smart city and connectivity solutions. In addition to helping monitor road conditions, the light poles could be fitted as high-speed data connections.

As cities grow in size and importance to the global economy, it will be increasingly important that they adopt the most innovative and forward-thinking design and sustainability ideas. As a smart infrastructure future unfolds, three important new technologies – big data, the IoT and renewable energy – are working in tandem to transform the day-to-day. For example, South Korea is planning an entire network of smart roads by 2020, including battery-charging stations for electric vehicles (EVs) as well as infrastructure to handle autonomous vehicles.

All this data and awareness will enable decisions that make the best possible use of space, fuel, energy, water, electricity, and all resources, with an emphasis on sustainability. For example, a clear priority is being able to anticipate big traffic jams and provide alternate routes to save time, fuel, and reduce impact on the city infrastructure itself. Limiting waste is a very logical outcome and benefit of the merging of big data, AI and IoT which feeds into the rise of smart infrastructure.

There is also a new scientific forecasting tool to predict solar weather, which will make the rollout of solar on smart roads (and in homes) a more feasible option. Eventually, with a growing array of such distributed power solutions, a centralised energy distribution grid for UK homes and businesses may not be necessary.

The smart city movement now afoot has the potential to transform the organisation of people and physical objects in a way that transcends urban development as we know it. The shift to smart infrastructure is not simply fashionable or aspirational; in many ways, it appears to be a critical enabler of the future sustainability of cities. It can be argued that the future of human life on the planet rests on a smooth transition to cities that are more efficient, less wasteful – and more conscious of the impacts of the individual upon the greater good.

Rohit Talwar, Steve Wells and Alexandra Whittington are from Fast Future which publishes books from future thinkers around the world exploring how developments such as AI, robotics and disruptive thinking  could impact individuals, society and business and create new trillion-dollar sectors.

 
 
 
 

To beat rising temperatures, Vienna launches a network of 'Cool Streets'

A Vienna resident cools off at one of the city's new Cool Streets installations. (Courtesy Christian Fürthner/Mobilitätsagentur Wien)

Over the past several months, Austria has recorded its highest unemployment rate since World War II, thanks to the economic aftermath of the Covid-19 pandemic. With no job or a suddenly smaller income – not to mention the continued threat of the virus – many Viennese will opt for a staycation this summer.  

At the same time, last year, Austria’s capital experienced 39 days with temperatures of over 30°C (86°F), one of its hottest summers in history according to the Central Institute for Meteorology and Geodynamics.

Climate experts expect a similarly sizzling 2020 season, and city officials are now doubling down on efforts to combat the heat by launching a “Cool Streets” initiative as well as a new, state-of-the-art cooling park.

“As the city councilwoman in charge of climate, it is my job to ensure local cooling,” Vienna’s deputy mayor Birgit Hebein proclaimed at the opening of one of 22 new “Cool Streets” on 22 June.

“In Austria, there are already more heat deaths than traffic fatalities,” she added.

Hebein was referring to the 766 people the Austrian Agency for Health and Food Security included in its 2018 heat-associated mortality statistics. The number was up by 31% compared to 2017, and in contrast to the 409 people who died in traffic collisions the same year.

The project includes 18 temporary Cool Streets located across the city, plus four roads that will be redesigned permanently and designated as “Cool Streets Plus”.

“The Plus version includes the planting of trees. Brighter surfaces, which reflect less heat, replace asphalt in addition to the installation of shadow or water elements,” said Kathrin Ivancsits, spokeswoman for the city-owned bureau Mobilitätsagentur, which is coordinating the project.


Vienna's seasonal Cool Streets provide shady places to rest and are closed to cars. (Petra Loho for CityMetric)

In addition to mobile shade dispensers and seating possibilities amid more greenery provided by potted plants, each street features a steel column offering drinking water and spray cooling. The temporary Cool Streets will also remain car-free until 20 September.

A sensor in the granite base releases drinking water and pushes it through 34 nozzles whenever the outside temperature reaches 25°C (77°F) . As soon as the ambient temperature drops to 23°C (73°F), the sensor, which operates from 10 a.m. to 8 p.m., turns off the water supply.

The sensors were included in part to allay concerns about legionella, a pathogenic bacteria that can reproduce in water.  

“When the spray stops, the system drains, and therefore no microbial contamination can develop,” said Dr. Hans-Peter Hutter, deputy head of the Department of Environmental Health at the Center for Public Health at Medical University Vienna, in a televised interview.

Hutter also assured the public that there is no increased risk of a Covid-19 infection from the spray as long as people adhere to the one-meter social distance requirement.


But Samer Bagaeen of the University of Kent's School of Architecture and Planning notes that air cooling systems, like the ones used in Germany at abattoirs, have been found recently to be a risk factor for Covid-19 outbreaks.

“The same could be said for spay devices,” he warned.

Vienna’s district councils selected the 22 Cool Street locations with the help of the city’s Urban Heat Vulnerability Index. The map shows where most people suffer from heat by evaluating temperature data, green and water-related infrastructure, and demographic data.

“Urban heat islands can occur when cities replace the natural land cover with dense concentrations of pavement, buildings, and other surfaces that absorb and retain heat,” as the US Environmental Protection Agency states.


A rendering of Vienna's planned park featuring a Coolspot, which is scheduled to open in August. Click to expand.
(Courtesy Carla Lo Landscape Architecture)

Vienna’s sixth district, Mariahilf, is such an area. The construction of the capital’s first “Cooling Park”, a €1 million project covering the 10,600 square-metre Esterházypark, is designed to provide relief. 

Green4Cities, a centre of excellence for green infrastructure in urban areas, designed the park’s main attraction, the “Coolspot”. The nearly 3.40-metre high steel trellis holds three rings equipped with spray nozzles. Textile shading slats, tensioned with steel cables, cover them.

The effects of evaporation and evapotranspiration create a cooler microclimate around the 30 square-metre seating area, alongside other spray spots selectively scattered across the park.

The high-pressure spray also deposits tiny droplets on plant and tree leaves, which stimulates them to sweat even more. All together, these collective measures help to cool their surroundings by up to six degrees.

The landscape architect Carla Lo and her team planned what she calls the “low-tech” park components. “Plants are an essential design element of the Cooling Park,” Lo says. “By unsealing the [soil], we can add new grass, herbaceous beds, and more climate-resistant trees to the existing cultivation”.

Light-coloured, natural stone punctuated by grass seams replaces the old concrete surfaces, and wooden benches meander throughout the park.

Living near the park and yearning for an urban escape close by, Lo says she’s motivated to ensure the park is completed by mid-August.

“If we don't do anything, Vienna will be another eight degrees Celsius hotter in 2050 than it already is,” Hebein said.

Vienna recently came in first in the World's 10 Greenest Cities Index by the consulting agency Resonance.

“There is no one size fits all on how cities respond to urban heat,” says the University of Kent’s Bagaeen, who points out that Vienna was one of the first European cities to set up an Urban Heat Islands Strategic Plan in 2015.

In the short term, prognoses on the city’s future development may be more difficult: Vienna votes this autumn.

Petra Loho is a journalist and photographer based in Austria.