What does legalising cannabis do to a city?

A cool person in Colorado doing something cool. Image: Getty.

It’s 4/20, a.k.a. National Weed Day: the day that a heady smog rises above every capital city, and hard currencies are replaced by fistfuls of crushed Doritos. In anticipation of 4/20, states in Australia and the United States have blazed up early, by announcing their plans to (partially) legalise cannabis.

Such decisions are made at national and state level. But, while advocates used to cite data collected from cannabis convivial countries like the Netherlands and Uruguay, a move towards legalisation in many U.S. states has lead to a spate of research at city level.

So, with this in mind, what impact does legalising cannabis have on a city and its infrastructure?

Economic benefits and drawbacks

Established weed welcomers have been long been aware of the economic benefits of legalisation: in the Netherlands, tax on coffee shops alone nets the government over €400m per annum. This is despite efforts by city councils to curtail the number of people who can buy and smoke cannabis.

Since Colorado legalised cannabis in November 2012, the state capital Denver has seen a “gold rush” of tourists, investment and new residents. A recent report from the Drug Policy Alliance found that the opening of just two dispensaries in Denver created 280 jobs and an economic output of $30m in the first half of 2014. There has also been an impact on the city’s housing market, with rent prices increasing by 9.6 per cent in 2014 and real estate prices rose by 10 per cent.

That said, these numbers are only impressive if a city actually wants drugs tourists and half its workforce priced out of the housing market.

And even though the sale of cannabis has benefited the Dutch economy, in October 2011 the border-city of Maastricht started banning foreigners from buying and smoking it. City authorities declared that drugs tourism was causing major traffic problems and disrupting residents’ ability to use the city. More recently Amsterdam, has started closing coffee shops in an attempt to make its central tourist district a bit more classy (elitist) and less sketchy (fun).


Less petty crime, more serious crime

Colorado legalised cannabis in 2012. Two years later, arrests for possession were down by 95 per cent in comparison to 2010. (You can still be arrested for carrying more than one ounce at a time.)

In theory, fewer arrests means less police time spent harassing teenagers suffering from pink eye. That in turn means fewer tax dollars spent on processing (in New York City the average possession charge costs $1000-$2000); fewer non-violent, first time offenders in prison; and an economy that benefits from not having a large proportion of its potential work force behind bars.

This theory holds true for cities that have legalised cannabis in the last five years. But! There has been a slight increase in serious crime. Not enough for residents to retreat into gated communities and start hoarding Fray Bentos pies; just enough for anti-legalisation advocates to start getting twitchy.

In 2015 burglaries at Denver cannabis businesses made up 2.5 per cent of attempted robberies in the city. And local police report that the number of “marijuana related crimes” are on the up – although there’s a gaping chasm of information about how these crimes were “related” to cannabis).

It is(n’t) easy being green

By now, it’s hopefully clear to everyone that people who illegally grow cannabis are basically the Hufflepuffs of crime. But, apparently, smoking something grown in weird Barry’s asbestos-ridden attic isn’t always 100 per cent safe. Legalisation means regulation – and while there’s something rather endearing about the idea of furtive farmers taking over an old Debenhams building, the potential for large electrical fires isn’t quite as cute.

In built up areas there is a real danger that herb happy Hufflepuffs might accidentally endanger hundreds of residents. But even if a city does decide to eliminate this risk, the issue of energy consumption remains. Cannabis cultivation uses a massive amount of water and energy, something that Californian residents are starting to notice is taking a toll.

Water use by cannabis farms is already impacting some city residents’ water supply. Increased consumption will place greater pressure on politicians to consider the environmental impact of legalisation, too.

 
 
 
 

Uncertainty is the new normal: the case for resilience in infrastructure

Members of the New York Urban Search and Rescue Task Force One help evacuate people from their homes in Fayetteville, North Carolina, in September 2018. Image: Getty.

The most recent international report on climate change paints a picture of disruption to society unless there are drastic and rapid cuts in greenhouse gas emissions. And although it’s early days, some cities and municipalities are starting to recognise that past conditions can no longer serve as reasonable proxies for the future.

This is particularly true for America’s infrastructure. Highways, water treatment facilities and the power grid are at increasing risk to extreme weather events and other effects of a changing climate.

The problem is that most infrastructure projects, including the Trump administration’s infrastructure revitalisation plan, typically ignore the risks of climate change.

In our work researching sustainability and infrastructure, we encourage and are starting to shift toward designing man-made infrastructure systems with adaptability in mind.

Designing for the past

Infrastructure systems are the front line of defense against flooding, heat, wildfires, hurricanes and other disasters. City planners and citizens often assume that what is built today will continue to function in the face of these hazards, allowing services to continue and to protect us as they have done so in the past. But these systems are designed based on histories of extreme events.

Pumps, for example, are sized based on historical precipitation events. Transmission lines are designed within limits of how much power they can move while maintaining safe operating conditions relative to air temperatures. Bridges are designed to be able to withstand certain flow rates in the rivers they cross. Infrastructure and the environment are intimately connected.

Now, however, the country is more frequently exceeding these historical conditions and is expected to see more frequent and intense extreme weather events. Said another way, because of climate change, natural systems are now changing faster than infrastructure.

How can infrastructure systems adapt? First let’s consider the reasons infrastructure systems fail at extremes:

  • The hazard exceeds design tolerances. This was the case of Interstate 10 flooding in Phoenix in fall 2014, where the intensity of the rainfall exceeded design conditions.

  • During these times there is less extra capacity across the system: When something goes wrong there are fewer options for managing the stressor, such as rerouting flows, whether it’s water, electricity or even traffic.

  • We often demand the most from our infrastructure during extreme events, pushing systems at a time when there is little extra capacity.

Gradual change also presents serious problems, partly because there is no distinguishing event that spurs a call to action. This type of situation can be especially troublesome in the context of maintenance backlogs and budget shortfalls which currently plague many infrastructure systems. Will cities and towns be lulled into complacency only to find that their long-lifetime infrastructure are no longer operating like they should?

Currently the default seems to be securing funding to build more of what we’ve had for the past century. But infrastructure managers should take a step back and ask what our infrastructure systems need to do for us into the future.


Agile and flexible by design

Fundamentally new approaches are needed to meet the challenges not only of a changing climate, but also of disruptive technologies.

These include increasing integration of information and communication technologies, which raises the risk of cyberattacks. Other emerging technologies include autonomous vehicles and drones as well as intermittent renewable energy and battery storage in the place of conventional power systems. Also, digitally connected technologies fundamentally alter individuals’ cognition of the world around us: consider how our mobile devices can now reroute us in ways that we don’t fully understand based on our own travel behavior and traffic across a region.

Yet our current infrastructure design paradigms emphasise large centralized systems intended to last for decades and that can withstand environmental hazards to a preselected level of risk. The problem is that the level of risk is now uncertain because the climate is changing, sometimes in ways that are not very well-understood. As such, extreme events forecasts may be a little or a lot worse.

Given this uncertainty, agility and flexibility should be central to our infrastructure design. In our research, we’ve seen how a number of cities have adopted principles to advance these goals already, and the benefits they provide.

A ‘smart’ tunnel in Kuala Lumpur is designed to supplement the city’s stormwater drainage system. Image: David Boey/creative commons.

In Kuala Lampur, traffic tunnels are able to transition to stormwater management during intense precipitation events, an example of multifunctionality.

Across the U.S., citizen-based smartphone technologies are beginning to provide real-time insights. For instance, the CrowdHydrology project uses flooding data submitted by citizens that the limited conventional sensors cannot collect.

Infrastructure designers and managers in a number of U.S. locations, including New York, Portland, Miami and Southeast Florida, and Chicago, are now required to plan for this uncertain future – a process called roadmapping. For example, Miami has developed a $500m plan to upgrade infrastructure, including installing new pumping capacity and raising roads to protect at-risk oceanfront property.

These competencies align with resilience-based thinking and move the country away from our default approaches of simply building bigger, stronger or more redundant.

Planning for uncertainty

Because there is now more uncertainty with regard to hazards, resilience instead of risk should be central to infrastructure design and operation in the future. Resilience means systems can withstand extreme weather events and come back into operation quickly.

Microgrid technology allows individual buildings to operate in the event of a broader power outage and is one way to make the electricity system more resilient. Image: Amy Vaughn/U.S. Department of Energy/creative commons.

This means infrastructure planners cannot simply change their design parameter – for example, building to withstand a 1,000-year event instead of a 100-year event. Even if we could accurately predict what these new risk levels should be for the coming century, is it technically, financially or politically feasible to build these more robust systems?

This is why resilience-based approaches are needed that emphasise the capacity to adapt. Conventional approaches emphasise robustness, such as building a levee that is able to withstand a certain amount of sea level rise. These approaches are necessary but given the uncertainty in risk we need other strategies in our arsenal.

For example, providing infrastructure services through alternative means when our primary infrastructure fail, such as deploying microgrids ahead of hurricanes. Or, planners can design infrastructure systems such that when they fail, the consequences to human life and the economy are minimised.

The Netherlands has changed its system of dykes and flood management in certain areas to better sustain flooding.

This is a practice recently implemented in the Netherlands, where the Rhine delta rivers are allowed to flood but people are not allowed to live in the flood plain and farmers are compensated when their crops are lost.

Uncertainty is the new normal, and reliability hinges on positioning infrastructure to operate in and adapt to this uncertainty. If the country continues to commit to building last century’s infrastructure, we can continue to expect failures of these critical systems, and the losses that come along with them.

The Conversation

Mikhail Chester, Associate Professor of Civil, Environmental, and Sustainable Engineering, Arizona State University; Braden Allenby, President's Professor and Lincoln Professor of Engineering and Ethics, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, and Samuel Markolf, Postdoctoral Research Associate, Urban Resilience to Extremes Sustainability Research Network, Arizona State University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.