The science behind Europe’s Siberian chill this week

Nice out. The A48 in the snow. Image: Getty.

The so-called “Beast from the East” arrived in the UK this week, bringing unusually cold weather – about 7°C colder than the historical average for this time of year. Wind chill is making temperatures feel particularly arctic.

So how did the Siberian gusts come to arrive on Europe’s doorstep?

The movement of air across the globe, and the weather it brings with it, is governed by three major influences: gravity, the sun, and something called the Coriolis effect. The influence of gravity is simple, constantly pulling air towards the Earth’s surface.

The rise and fall of the sun dictates whether the air stays there. During the day, radiation from the sun heats the Earth, warming air directly above the surface and causing it to rise, leaving behind a region of low pressure (a low density of air particles). As the air rises, it cools and spreads outwards.

This mass of air, now denser than the air below it, sinks back down under the force of gravity, and naturally flows back towards the lower pressure region of air, creating a cycle of air circulation. These circulating patterns of wind exist on an intercontinental scale, transporting heat all the way from the tropics to the poles.

However, thanks to the Coriolis effect – the deflection of objects moving in a straight path due to the Earth’s rotation – the winds do not travel directly north or south. To illustrate this effect, imagine a spinning top. Parts of the spinning top closer to the spindle rotate at slower speeds than parts further away, as they have less distance to travel to complete a full circle. Similarly, the equator has to travel much faster than the poles do as the Earth rotates. As air travels north from the equator, its extra momentum compared to the slower rotating land that it is moving over makes it curve across to the east, while air travelling to the south pole curves westward.

In the northern hemisphere, this interaction between the Coriolis effect and the circulation systems produces the northern polar jet stream: high altitude currents of air blowing eastwards at hundreds of miles per hour, moving weather systems around the globe. This causes the UK’s prevailing westerly and south-westerly winds, which usually draw weather systems in from the relatively warm Atlantic and shield us from colder air masses to the east.

The shape of the jet streams is not rigid – it follows a meandering path, much like a slithering snake. Occasionally, the jet stream path can become so twisted that it folds back upon itself, reversing the direction of the prevailing wind, and drawing in cold air from the east.


This is exactly what just happened. In the last couple of days, the bitterly cold front combined with water vapour in the air to carpet the country in a blanket of brilliant white.

As the warmth of the sun disappears each night, the cold can feel all the more biting. But in the absence of the sun’s heat, the smaller difference in temperature between air near the ground and higher up makes air circulate more slowly. This often creates calmer conditions that might just provide a brief respite from the extra chill of the wind. For this same reason, air passengers generally experience smoother flying conditions when flying at night.

If you live in the city however, your experience of the “beast” can vary wildly from place to place. Cities continue to produce heat at night, generating their own microclimates. This man-made heat keeps air moving, and warms city dwellers up more than those in rural areas. At the same time, the ordered formation of buildings in cities creates strong wind corridors that are certainly best avoided at times like these.

Wherever you are experiencing this freezing weather, you can at least be thankful that you are here on Earth. Wind circulation patterns on other planets produce far more extreme weather than we will ever experience. Visitors to Venus, for example, would experience some serious turbulence when approaching landing, as the 500°C difference between surface and cloud generates extreme air circulation.

The ConversationHowever, if you were lucky enough to touch down and survive the experience of the crushing pressure found on Venus’ surface, you would feel nothing more than a gentle breeze, thanks to the planet’s very slow rotation, weak Coriolis effect, and dense air. You might want to seek shelter though – at close to 460°C, suddenly a cold chill doesn’t seem so bad.

Gareth Dorrian, Post Doctoral Research Associate in Space Science, Nottingham Trent University and Ian Whittaker, Lecturer, Nottingham Trent University.

This article was originally published on The Conversation. Read the original article.

 
 
 
 

In many ways, smart cities are really very dumb

Rio de Janeiro’s control centre. Image: Getty.

It’s not news that anything and everything is increasingly being prefaced with “smart”: phones, watches, homes, fridges, and even water (yes, smartwater exists). And it’s not unintentional either. 

Marketeers know that we, the public, are often stupid enough to believe that thanks to their technology, life is better now than it was way back in, say, the primitive Nineties. Imagine having to, like a Neanderthal, remember how to spell words without an autocorrecting algorithm, or open the fridge door to check if you’d run out of milk, or, worse still, interact with actual people.

So it’s hardly surprising that we’re now also witnessing the rise of the so-called “smart cities”; a concept which presupposes that cities that are not technologically  “smart” are dumb, which, as anyone interested in the millennia-old history of cities — from the crypto-currency grain storage algorythms of ancient Mesopotamia to the complex waste infrastructure of ancient Rome, to London’s public transport infrastructure — will know, is not true.

Deployed in these smart cities are cameras and other networked information-gathering devices, load cells and other “sensing devices” detecting passing pedestrians and vehicles, audio surveillance devices listening for gunshots – and even vending machines equipped with biometric sensors to recognise your face. This is not to mention beacon technology — tiny anonymous looking black boxes hidden in trees and on lampposts — which transmits advertising, offers and other information directly to smart phones in the vicinity. 

If that doesn’t seem sinister enough, take, for example, Rio de Janeiro, where, in 2014, the International Business Machines Corporation designed a mammoth “control centre” that integrates data from 30 agencies for the city’s police. 

Described by the Guardian as having “the functionality of a Bond villian’s techno lair”, the then local mayor, Eduardo Paes, claimed the centre was making the city safer while using technology to deploy its “special” police unit to carry out the state’s “pacification programme”. Launched in 2008, the programme, which aims to push out drug gangs from Rio’s favelas, has been criticised by Amnesty International: “in January and February 2017 in Rio de Janeiro alone, at least 182 people were killed during police operations in marginalized neighbourhoods (favelas) – a 78 per cent increase in comparison to the same period in 2016”.

Sinister or not, as smart cities grow, they create new problems. For example, as urbanist Adam Greenfield writes in Radical Technologies: The Design of Everyday Life, neither the algorithms nor their designers are subject to the ordinary processes of democratic accountability – a problem that international academics are currently attempting to tackle.  


“We need to understand that the authorship of an algorithm intended to guide the distribution of civic resources is itself an inherently political act,” writes Greenfield. “The architects of the smart city have utterly failed to reckon with the reality of power.”

The Real Smart Cities project, founded by Dr Gerald Moore, Dr Noel Fitzpatrick and Professor Bernard Stiegler, is investigating the ways in which so-called “smart city” technologies present a threat to democracy and citizenship, and how digital tools might be used create new forms of community participation.

Fitzpatrick is critical of current discourses around smart cities, which he says “tend to be technical fixes, where technology is presented as a means to solve the problems of the city.” The philosophy underpinning the project is “that technologies function as forms of pharmacology”, he adds, meaning that they can be both positive and negative. “The addictive negative effects are being felt at an individual and collective level.” 

An example of this lies in the way that many of these smart cities replace human workers with disembodied voices — “Alexa we need more toilet roll” — like those used to control the Amazon Echo listening device — the high priestess of smart home. These disembodied voices travel at the speed of light to cavernous, so-called “fulfilment centres”, where an invisible workforce are called into action by our buy-it-now, one-click impulse commands; moving robotically down seemingly endless aisles of algorithmically organised products arranged according to purchase preferences the like of which we never knew we had — someone who buys a crime novel might be more likely to go on and buy cat food, a wireless router, a teapot and a screwdriver. 

Oh to be the archeologists of the future who while digging through mounds of silicon dust happen upon these vast repositories of disembodies voices. That the digital is inherently material and the binary of virtual/real does not hold — there is no cyberspace, just space. Space that is being increasingly populated by technologies that want to watch you, listen to you, get to know you and sense your presence.

One project looking to solve some of the problems of smart cities is that of the development of a “clinic of contribution” within Pleine Commune in greater Paris (an area where one in three live in poverty).This attempts to deal with issues of communication between parents and children where the widespread use of smartphones as parental devices from infancy is having effects on the attention of young children and on the communicative abilities between parents and children. 

This in turn forms part of a wider project in the area that Stiegler describes as “installing a true urban intelligence”, which moves beyond what he sees as the bankrupt idea of smart cities. The aim is to create a “contributory income” in the area that responds to the loss of salaried jobs due to automation and the growth and spread of digitisation. 

The idea being that an income could be paid to residents, on the condition that they perform a service to society. This, if you are unemployed, living in poverty and urban deprivation, sounds like quite a simple and smart idea to try and solve some of the dumb effcts of the digital technology that's implemented in cities under the ideology of being “smart”.