I explored the Antarctic deep seas for Blue Planet II – and it was like going back 350m years

Ooooh. Image: BBC.

“It has always been our ambition to get inside that white space, and now we are there the space can no longer be blank,” wrote the polar explorer Captain Scott, on crossing the 80th parallel of the Antarctic continent for the first time in 1902. Fast-forward more than a century – and the deep ocean floor around Antarctica still offers a “white space”, beyond the reach of scuba divers, only partially mapped in detail by sonar from ships and seldom surveyed by robotic vehicles.

So I jumped at the chance to join a team from the BBC on an expedition to the Antarctic Peninsula for Blue Planet II, to help them as a scientific guide. Thanks to the crew of the research ship Alucia, we dived in minisubmarines to 1km deep in the Antarctic for the first time. And while we didn’t face anything like the physical hardships endured by early polar explorers on land, those dives did give us the opportunity for some unique science.

The deep ocean around Antarctica is a special place for several reasons. Because Antarctica is pushed down by the weight of its ice sheets, the submerged continental shelf around it is deeper than usual, around 500-600m deep at its edge rather than 100-200m deep. It’s also cut by even deeper channels close inshore, some plunging more than 1km, scoured out by larger ice sheets in the past. So although the continent itself is remote, we can reach the deep ocean close inshore here – handy for us diving in minisubmarines, despite the need to dodge icebergs.

Giant sponges found in the deep waters of the Antarctic. Image: BBC NHU.

There’s a gateway to the deep for marine life here too. Some deep-sea animals come into much shallower depths than usual around Antarctica, because the water temperature near the surface is similar to the cold temperatures elsewhere in the deep ocean. And in the past, shallow-living ancestors of some deep-sea animals spread out across the deep oceans from the Antarctic, via this cold gateway between the shallows and the deep.

One of my favourite animals that we saw on dives was the octopus Graneledone antarctica, whose ancestor ventured down from the shallows around 15m years ago, when the water temperature at the surface cooled to the same chilly temperature as the deep. Her descendants then spread out across the abyss like wagon-train pioneers, giving rise to several different species of deep-sea octopus found around the world today. Some stayed behind, however, becoming the species that we saw.

The ocean around Antarctica is also the lungs of the deep. Much of the life-giving oxygen in deep waters across the world begins its journey from the atmosphere here. As seawater freezes around the white continent in winter, it leaves behind very cold and salty water that sinks and flows into the depths of the Atlantic, Indian and Pacific Oceans – even the deepest water in the ocean, at the bottom of the Marianas Trench 14,000km away, came from here. As this deep water flows out from the Antarctic, it carries oxygen, dissolved from the atmosphere at the surface. So the Antarctic is where the world’s deep oceans breathe in – and its waters are among the most oxygen-rich on our planet.

Another of my favourite animals from our dives takes advantage of those oxygen-rich waters: giant sea-spiders, with legspans up to 40cm across. Sea spiders lack a respiratory system, which usually limits their size, but can grow much larger in the oxygen-rich conditions here.


‘Ancient ocean ecosystems’

Diving in the Antarctic is also a journey back in time, to glimpse what ancient ocean ecosystems were once like. Fish dominate as predators in most marine ecosystems today, but few fish species can cope with the -1.5℃ conditions where we were diving. The “ice dragonfish”, Cryodraco antarcticus, is a notable exception, however, and another of my favourite animals – with antifreeze proteins that stop its blood from icing up. Its blood is also clear, without any of the oxygen-carrying haemoglobin that gives ours its red colour – in the cold waters, enough oxygen dissolves directly in the fluid of the fish’s blood to keep it alive.

But there are few fish with remarkable adaptations like the ice dragon, and so invertebrates have diversified to dominate as predators in the deep ocean here, just as they did throughout the oceans more than 350m years ago. A final favourite from our dives epitomises that: the Antarctic sunstar Labidiaster annulatus, which is a relative of the familiar five-armed starfish. Nicknamed “the Death Star” by those inside the subs who watched its behaviour, it has up to 50 arms and grows larger than a dinner plate. It uses those arms like fishing rods, holding them up off the seabed to snag passing krill, thanks to tiny pincers on its skin that snap shut when anything brushes past them. Unlike other starfish, Labidiaster can wave its arms to catch prey here because there are relatively few predatory fish to chew them off.

A feather star dances in the deep waters of the Antarctic Sound. Image: BBC NHU.

The ConversationOverall, seeing the deep Antarctic sea floor close-up from our minisubs should help us to understand how “dropstones” shape the pattern of life here. “Dropstones” are car-sized boulders that fall from passing icebergs – they provide “islands” of rocky habitat for filter-feeding species which otherwise don’t get a look-in on the soft mud of the Antarctic seafloor. But where the dropstones settle depends on the undersea terrain. As we found on our dives, they slide down steeper undersea slopes, actually scraping off marine life. But if you’re at the bottom of a gully, then lots of dropstones end up there, giving a major boost to local biodiversity. That pattern of life is hard to see from samples collected by nets or trawls in the past, so our first minisub dives to 1km deep in the Antarctic should help to make that “white space” no longer such a blank.

Jon Copley is associate professor in ocean exploration & pbblic engagement at theUniversity of Southampton.

This article was originally published on The Conversation. Read the original article.

 
 
 
 

Everything you ever wanted to know about the Seoul Metro System but were too afraid to ask

Gwanghwamoon subway station on line 5 in Seoul, 2010. Image: Getty.

Seoul’s metro system carries 7m passengers a day across 1,000 miles of track. The system is as much a regional commuter railway as an urban subway system. Without technically leaving the network, one can travel from Asan over 50 miles to the south of central Seoul, all the way up to the North Korean border 20 miles north of the city.

Fares are incredibly low for a developed country. A basic fare of 1,250 won (about £1) will allow you to travel 10km; it’s only an extra 100 won (about 7p) to travel every additional 5km on most lines.

The trains are reasonably quick: maximum speeds of 62mph and average operating speeds of around 20mph make them comparable to London Underground. But the trains are much more spacious, air conditioned and have wi-fi access. Every station also has protective fences, between platform and track, to prevent suicides and accidents.

The network

The  service has a complex system of ownership and operation. The Seoul Metro Company (owned by Seoul City council) operates lines 5-8 on its own, but lines 1-4 are operated jointly with Korail, the state-owned national rail company. Meanwhile, Line 9 is operated jointly between Trans-Dev (a French company which operates many buses in northern England) and RATP (The Parisian version of TfL).

Then there’s Neotrans, owned by the Korean conglomerate Doosan, which owns and operates the driverless Sinbundang line. The Incheon city government, which borders Seoul to the west, owns and operates Incheon Line 1 and Line 2.

The Airport Express was originally built and owned by a corporation jointly owned by 11 large Korean firms, but is now mostly owned by Korail. The Uijeongbu light railway is currently being taken over by the Uijeongbu city council (that one’s north of Seoul) after the operating company went bankrupt. And the Everline people mover is operated by a joint venture owned by Bombardier and a variety of Korean companies.

Seoul’s subway map. Click to expand. Image: Wikimedia Commons.

The rest of the lines are operated by the national rail operator Korail. The fare structure is either identical or very similar for all of these lines. All buses and trains in the region are accessible with a T-money card, similar to London’s Oyster card. Fares are collected centrally and then distributed back to operators based on levels of usage.

Funding

The Korean government spends around £27bn on transport every year: that works out at 10 per cent more per person than the British government spends.  The Seoul subway’s annual loss of around £200m is covered by this budget.

The main reason the loss is much lower than TfL’s £458m is that, despite Seoul’s lower fares, it also has much lower maintenance costs. The oldest line, Line 1 is only 44 years old.


Higher levels of automation and lower crime rates also mean there are fewer staff. Workers pay is also lower: a newly qualified driver will be paid around £27,000 a year compared to £49,000 in London.

New infrastructure is paid for by central government. However, investment in the capital does not cause the same regional rivalries as it does in the UK for a variety of reasons. Firstly, investment is not so heavily concentrated in the capital. Five other cities have subways; the second city of Busan has an extensive five-line network.

What’s more, while investment is still skewed towards Seoul, it’s a much bigger city than London, and South Korea is physically a much smaller country than the UK (about the size of Scotland and Wales combined). Some 40 per cent of the national population lives on the Seoul network – and everyone else who lives on the mainland can be in Seoul within 3 hours.

Finally, politically the biggest divide in South Korea is between the south-west and the south-east (the recently ousted President Park Geun-Hye won just 11 per cent of the vote in the south west, while winning 69 per cent in the south-east). Seoul is seen as neutral territory.  

Problems

A driverless train on the Shinbundang Line. Image: Wikicommons.

The system is far from perfect. Seoul’s network is highly radial. It’s incredibly cheap and easy to travel from outer lying areas to the centre, and around the centre itself. But travelling from one of Seoul’s satellite cities to another by public transport is often difficult. A journey from central Goyang (population: 1m) to central Incheon (population: 3m) is around 30 minutes by car. By public transport, it takes around 2 hours. There is no real equivalent of the London Overground.

There is also a lack of fast commuter services. The four-track Seoul Line 1 offers express services to Incheon and Cheonan, and some commuter towns south of the city are covered by intercity services. But most large cities of hundreds of thousands of people within commuting distance (places comparable to Reading or Milton Keynes) are reliant on the subway network, and do not have a fast rail link that takes commuters directly to the city centre.

This is changing however with the construction of a system modelled on the Paris RER and London’s Crossrail. The GTX will operate at maximum speed of 110Mph. The first line (of three planned) is scheduled to open in 2023, and will extend from the new town of Ilsan on the North Korean border to the new town of Dongtan about 25km south of the city centre.

The system will stop much less regularly than Crossrail or the RER resulting in drastic cuts in journey times. For example, the time from llsan to Gangnam (of Gangnam Style fame) will be cut from around 1hr30 to just 17 minutes. When the three-line network is complete most of the major cities in the region will have a direct fast link to Seoul Station, the focal point of the GTX as well as the national rail network. A very good public transport network is going to get even better.