How can cities detect, and avoid, peaks in particulate-matter air pollution?

Pollution over Lyon. Image: Getty.

In January 2017, France and a large part of Europe were struck by episodes of particulate matter pollution. These microscopic particles are known as PM2.5 and PM10 when they measure less than 2.5 or 10 micrometers (µm) in diameter respectively. The Conversation

They are proven to be harmful to human health because they enter our respiratory system, and the smallest can even enter our blood flow. According to the European Environment Agency, air pollution is the cause of 467,000 premature deaths annually in Europe.

These particles can come from natural sources (sea salt, volcanic eruptions, forest fires, etc.) or human activities (transport, heating, industry, etc.)

What is a pollution peak?

Pollution peaks occur when regulatory warning thresholds, as defined in 2008 by the European Union and transposed to French law in late 2010, are exceeded. In virtue of these regulations, the first level of severity (known as the “public information and warning threshold”) is reached for PM10 particles when there are ≥50 µg per cubic meter of air (m³) in the atmosphere; the warning level is reached at ≥80 µg/m³.

There is no trigger limit for PM2.5, but just a set maximum amount of 25 µg/m³ on average per year.

However, these regulations have serious limitations. The “mass” concentration thresholds which indicate the total mass of particles in the air and which are used to assess the danger of particulate matter pollution are higher than the levels recommended by the WHO; the latter have been set for PM10 at 20 µg/m³ on average per year and 50 µg/m³ on average per day, in order to take account of chronic and short-term exposure.

In addition, the only parameter taken into account in European and French regulations concerns mass concentration. The concentration in terms of number (i.e. the number of particles per m³ of air), and the chemical composition are not taken into account for the triggering of warnings.

Lastly, there are no regulations for very small particulate matter (less than 1 µm), which is mainly produced by human activity, even though it is potentially the most harmful.

Comparison of the size of microscopic particles with a hair and grain of sand. Image: EPA/creative commons.

How are they detected?

In France, the Ministry for the Environment has delegated the task of monitoring air quality and regulated pollutants across the country to certified associations united under Fédération Atmo France. They are supported in this task by the Central Laboratory for the Monitoring of Air Quality.

These associations put in place automatic measurements for the concentration of pollutants, as well as other monitoring measures to allow a better understanding of the phenomena observed, such as the chemical composition of particles, or weather conditions.

These measurements can be combined with approaches for modeling particle concentration, thanks in particular to Prevair, the French forecast platform. Calculating the history of air mass can also be used to reveal the origin of particles, and it is therefore now possible to describe the phenomena at the origin of the increase in concentrations in relative detail.

Explanation of a real case

The graph below, produced from observations by our research department and measurements by Atmo Hauts-de-France, illustrates an example of pollution peaks that affected the local area in January 2017.

During this period, anticyclonic weather conditions contributed to the stagnation of air masses above pollutant-emitting areas. In addition, cooler temperatures led to an increase in emissions (notably linked to domestic wood heating) and the formation of “secondary” particles which formed after chemical reactions in the atmosphere.

Image: Data V. Riffault/SAGE (Cappa and Climibio projects)/creative commons.

The graphs show changes in mass concentrations of PM10 and PM2.5 over a period of several days at the Lille Fives monitoring station, as well as changes in several chemical species measured in PM1 4 km away on the University of Lille campus.

We can see that almost all the particles fell within the PM2.5 proportion, something which rules out natural phenomena such as a dust being blown in from deserts, since such particles mainly fall within the range of 2.5 to 10 µm. Furthermore, the particles in question are generally smaller in size than 1 µm.

The pollution episode began on the evening of 21 January  and continued throughout the weekend, in spite of a lower level of road traffic. This can be explained by an increase in wood burning (as suggested by the m/z 60 tracer, which is a fragment of levoglucosan, a molecule emitted by pyrolysis of cellulose found in wood).

Wood burning and other forms of combustion (such as traffic or certain industries) also emit nitrogen dioxide (NO2) as a gas, which can turn into nitric acid (HNO3) through a reaction with hydroxyl radicals (•OH) in the atmosphere.

At sufficiently low temperatures, HNO3 combines with ammonia (NH3) produced by farming activity to form ammonium nitrate (NH4NO3) solid. These are known as “secondary particles”.

A slight decrease in concentrations of particulate matter was observed at the end of the weekend, with more favorable weather conditions for the dispersion and elimination of pollutants.

In this episode, the very low concentrations of sulfates rule out an impact from coal power stations in Germany and Eastern Europe. It is therefore definitely a question of local and regional pollution linked to human activity and which accumulated as a result of unfavorable weather conditions.

How can this be avoided?

Since we cannot control the weather conditions, levers of action are primarily based on reducing pollutant emissions.

For example, reducing the formation of secondary particles will entail limiting NO2emissions linked to road traffic through road space rationing measures; for NH3 emissions, action must be taken regarding farming practices (spreading and rearing methods).

Concerning emissions from wood heating, replacing older devices with cleaner ones will enable better burning and fewer particulate matter emissions; this could be accompanied by an investment in housing insulation.

But these measures should not make us forget populations’ chronic exposure to concentrations of particulate matter which exceed the recommended WHO thresholds. This type of pollution is insidious and is damaging to health in the medium and long term, notably with the development of cardio-vascular and respiratory diseases and lung cancer.

Véronique Riffault is professor of atmospheric science at IMT Lille Douai – Institut Mines-Télécom.

This article was originally published on The Conversation. Read the original article.


“Stop worrying about hairdressers”: The UK government has misdiagnosed its productivity problem

We’re going as fast as we can, here. Image: Getty.

Gonna level with you here, I have mixed feelings about this one. On the one hand, I’m a huge fan of schadenfreude, so learning that it the government has messed up in a previously unsuspected way gives me this sort of warm glow inside. On the other hand, the way it’s been screwing up is probably making the country poorer, and exacerbating the north south divide. So, mixed reviews really.

Here’s the story. This week the Centre for Cities (CfC) published a major report on Britain’s productivity problem. For the last 200 years, ever since the industrial revolution, this country has got steadily richer. Since the financial crash, though, that seems to have stopped.

The standard narrative on this has it that the problem lies in the ‘long tail’ of unproductive businesses – that is, those that produce less value per hour. Get those guys humming, the thinking goes, and the productivity problem is sorted.

But the CfC’s new report says that this is exactly wrong. The wrong tail: Why Britain’s ‘long tail’ is not the cause of its productivity problems (excellent pun, there) delves into the data on productivity in different types of businesses and different cities, to demonstrate two big points.

The first is that the long tail is the wrong place to look for productivity gains. Many low productivity businesses are low productivity for a reason:

The ability of manufacturing to automate certain processes, or the development of ever more sophisticated computer software in information and communications have greatly increased the output that a worker produces in these industries. But while a fitness instructor may use a smartphone today in place of a ghetto blaster in 1990, he or she can still only instruct one class at a time. And a waiter or waitress can only serve so many tables. Of course, improvements such as the introduction of handheld electronic devices allow orders to be sent to the kitchen more efficiently, will bring benefits, but this improvements won’t radically increase the output of the waiter.

I’d add to that: there is only so fast that people want to eat. There’s a physical limit on the number of diners any restaurant can actually feed.

At any rate, the result of this is that it’s stupid to expect local service businesses to make step changes in productivity. If we actually want to improve productivity we should focus on those which are exporting services to a bigger market.  There are fewer of these, but the potential gains are much bigger. Here’s a chart:

The y-axis reflects number of businesses at different productivities, shown on the x-axis. So bigger numbers on the left are bad; bigger numbers on the right are good. 

The question of which exporting businesses are struggling to expand productivity is what leads to the report’s second insight:

Specifically it is the underperformance of exporting businesses in cities outside of the Greater South East that causes not only divergences across the country in wages and standards of living, but also hampers national productivity. These cities in particular should be of greatest concern to policy makers attempting to improve UK productivity overall.

In other words, it turned out, again, to the north-south divide that did it. I’m shocked. Are you shocked? This is my shocked face.

The best way to demonstrate this shocking insight is with some more graphs. This first one shows the distribution of productivity in local services business in four different types of place: cities in the south east (GSE) in light green, cities in the rest of the country (RoGB) in dark green, non-urban areas in the south east in purple, non-urban areas everywhere else in turquoise.

The four lines are fairly consistent. The light green, representing south eastern cities has a lower peak on the left, meaning slightly fewer low productivity businesses, but is slightly higher on the right, meaning slightly more high productivity businesses. In other words, local services businesses in the south eastern cities are more productive than those elsewhere – but the gap is pretty narrow. 

Now check out the same graph for exporting businesses:

The differences are much more pronounced. Areas outside those south eastern cities have many more lower productivity businesses (the peaks on the left) and significantly fewer high productivity ones (the lower numbers on the right).

In fact, outside the south east, cities are actually less productive than non-urban areas. This is really not what you’d expect to see, and no a good sign for the health of the economy:

The report also uses a few specific examples to illustrate this point. Compare Reading, one of Britain’s richest medium sized cities, with Hull, one of its poorest:

Or, looking to bigger cities, here’s Bristol and Sheffield:

In both cases, the poorer northern cities are clearly lacking in high-value exporting businesses. This is a problem because these don’t just provide well-paying jobs now: they’re also the ones that have the potential to make productivity gains that can lead to even better jobs. The report concludes:

This is a major cause for concern for the national economy – the underperformance of these cities goes a long way to explain both why the rest of Britain lags behind the Greater South East and why it performs poorly on a

European level. To illustrate the impact, if all cities were as productive as those in the Greater South East, the British economy would be 15 per cent more productive and £225bn larger. This is equivalent to Britain being home to four extra city economies the size of Birmingham.

In other words, the lesson here is: stop worrying about the productivity of hairdressers. Start worrying about the productivity of Hull.

You can read the Centre for Cities’ full report here.

Jonn Elledge is the editor of CityMetric. He is on Twitter as @jonnelledge and on Facebook as JonnElledgeWrites

Want more of this stuff? Follow CityMetric on Twitter or Facebook