Here are three ways your smartphone is screwing up the planet

You’re not helping, Macron. Image: Getty.

Nearly five billion people worldwide will use a smartphone by 2020. Each device is made up of numerous precious metals and many of the key technological features wouldn’t be possible without them. Some, like gold, will be familiar. Others, such as terbium, are less well-known.

Mining these metals is a vital activity that underpins the modern global economy. But the environmental cost can be enormous and is probably far greater than you realise. Let’s walk through some of the key metals in smartphones, what they do, and the environmental cost of getting them out of the ground.

Catastrophic mine waste spills

Iron (20 per cent), aluminium (14 per cent) and copper (7 per cent) are the three most common metals by weight in your average smartphone. Iron is used in speakers and microphones and in stainless steel frames. Aluminium is used as a lightweight alternative to stainless steel and also in the manufacture of the strong glass used in smartphone screens. Copper is used in electric wiring.

However, enormous volumes of solid and liquid waste (termed mine “tailings”) are produced when extracting these metals from the earth. Typically, mine tailings are stored in vast impoundment structures that can be several square kilometres in area. Recent catastrophic mine tailings spills highlight the danger of improper construction methods and lax safety monitoring.

The largest spill on record occurred in November 2015 when a dam collapsed at an iron ore mine in Minas Gerais, Brazil, releasing approximately 33m cubic metres (enough to fill 23,000 Olympic swimming pools) of iron-rich waste into the River Doce. The waste inundated local villages killing 19 people and travelled 650km until it reached the Atlantic Ocean 17 days later.

The village of Bento Rodrigues was buried under toxic sludge. Image: Senado Federal/creative commons.

This was just one of 40 mine tailings spills that have occurred in the past decade and the long-term ecological and human health impacts remain largely unknown. One thing is clear though – as our thirst for technology increases, mine tailings dams are increasing in number and size, and so is their risk of failure.

Ecosystem destruction

Gold and tin are common in smartphones. But mining of these metals is responsible for ecological devastation from the Peruvian Amazon to the tropical islands of Indonesia.

Gold in smartphones is used primarily to make connectors and wires but gold mining is a major cause of deforestation in the Amazon. Furthermore, extraction of gold from the earth generates waste rich in cyanide and mercury – two highly toxic substances that can contaminate drinking water and fish, with serious implications for human health.

Illegal gold mining causes deforestation in the Peruvian Amazon. Image: Planet Labs Inc./creative commons.

Tin is used for soldering in electronics. Indium-tin oxide is applied to smartphone screens as a thin, transparent and conductive coating that gives touchscreen functionality. The seas surrounding Indonesia’s Bangka and Belitung Islands supplies about a third of the world’s supply. However, large-scale dredging of the seabed for the tin-rich sand has destroyed the precious coral ecosystem while the decline of the fishing industry has led to economic and social problems.


The most polluted place on the planet?

What makes your smartphone smart? That’ll be the rare earth elements – a group of 17 metals with weird names like praseodymium that are mined mostly in China, Russia and Australia.

Often dubbed “technology metals”, rare earths are fundamental to smartphone design and function. Crystal clear smartphone speakers, microphones and phone vibration are possible due to small yet powerful motors and magnets manufactured using neodymium, dysprosium and praseodymium. Terbium and dysprosium are also used to produce the vibrant colours of a smartphone screen.

Extracting rare earths is a difficult and dirty business, typically involving the use of sulphuric and hydrofluoric acids and the production of vast amounts of highly toxic waste. Perhaps the most disturbing and thought provoking example of the environmental cost of our smartphone thirst is the “world’s tech waste lake” in Baotou, China. Created in 1958, this artificial lake collects the toxic sludge from rare earth processing operations.

The valuable metals used to manufacture smartphones are a finite resource. Recent estimates indicate we will run out of some rare earths in the next 20 to 50 years, which makes you wonder if smartphones will still be around then. Reducing the environmental impact of smartphone use requires manufacturers to increase product lifetimes, make recycling more straightforward and be open about where they source their metals and the environmental impact. Around the world mining companies have made huge strides in practising more sustainable mining. But we as consumers also need to consider smartphones as less of a throwaway item and more of a precious resource that carries an enormous environmental burden.

The Conversation

Patrick Byrne, Senior Lecturer in Geography, Liverpool John Moores University and Karen Hudson-Edwards, Professor in Sustainable Mining, University of Exeter.

This article was originally published on The Conversation. Read the original article.

 
 
 
 

What’s killing northerners?

The Angel of the North. Image: Getty.

There is a stark disparity in wealth and health between people in the north and south of England, commonly referred to as England’s “north-south divide”. The causes of this inequality are complex; it’s influenced by the environment, jobs, migration and lifestyle factors – as well as the long-term political power imbalances, which have concentrated resources and investment in the south, especially in and around London.

Life expectancy is also lower in the north, mainly because the region is more deprived. But new analysis of national mortality data highlights a shockingly large mortality gap between young adults, aged 25 to 44, living in the north and south of England. This gap first emerged in the late 1990s, and seems to have been growing ever since.

In 1995, there were 2% more deaths among northerners aged 25 to 34 than southerners (in other words, 2% “excess mortality”). But by 2015, northerners in this age group were 29% more likely to die than their southern counterparts. Likewise, in the 35 to 44 age group, there was 3% difference in mortality between northerners and southerners in 1995. But by 2015, there were 49% more deaths among northerners than southerners in this age group.

Excess mortality in the north compared with south of England by age groups, from 1965 to 2015. Follow the lines to see that people born around 1980 are the ones most affected around 2015.

While mortality increased among northerners aged 25 to 34, and plateaued among 35 to 44-year-olds, southern mortality mainly declined across both age groups. Overall, between 2014 and 2016, northerners aged 25 to 44 were 41% more likely to die than southerners in the same age group. In real terms, this means that between 2014 and 2016, 1,881 more women and 3,530 more men aged between 25 and 44 years died in the north, than in the south.

What’s killing northerners?

To understand what’s driving this mortality gap among young adults, our team of researchers looked at the causes of death from 2014 to 2016, and sorted them into eight groups: accidents, alcohol related, cardiovascular related (heart conditions, diabetes, obesity and so on), suicide, drug related, breast cancer, other cancers and other causes.

Controlling for the age and sex of the population in the north and the south, we found that it was mostly the deaths of northern men contributing to the difference in mortality – and these deaths were caused mainly by cardiovascular conditions, alcohol and drug misuse. Accidents (for men) and cancer (for women) also played important roles.

From 2014 to 2016, northerners were 47% more likely to die for cardiovascular reasons, 109% for alcohol misuse and 60% for drug misuse, across both men and women aged 25 to 44 years old. Although the national rate of death from cardiovascular reasons has dropped since 1981, the longstanding gap between north and south remains.

Death and deprivation

The gap in life expectancy between north and south is usually put down to socioeconomic deprivation. We considered further data for 2016, to find out if this held true for deaths among young people. We found that, while two thirds of the gap were explained by the fact that people lived in deprived areas, the remaining one third could be caused by some unmeasured form of deprivation, or by differences in culture, infrastructure, migration or extreme weather.

Mortality for people aged 25 to 44 years in 2016, at small area geographical level for the whole of England.

Northern men faced a higher risk of dying young than northern women – partly because overall mortality rates are higher for men than for women, pretty much at every age, but also because men tend to be more susceptible to socioeconomic pressures. Although anachronistic, the expectation to have a job and be able to sustain a family weighs more on men. Accidents, alcohol misuse, drug misuse and suicide are all strongly associated with low socioeconomic status.

Suicide risk is twice as high among the most deprived men, compared to the most affluent. Suicide risk has also been associated with unemployment, and substantial increases in suicide have been observed during periods of recession – especially among men. Further evidence tells us that unskilled men between ages 25 and 39 are between ten and 20 times more likely to die from alcohol-related causes, compared to professionals.

Alcohol underpins the steep increase in liver cirrhosis deaths in Britain from the 1990s – which is when the north-south divide in mortality between people aged 25 to 44 also started to emerge. Previous research has shown that men in this age group, who live in the most deprived areas, are five times more likely to die from alcohol-related diseases than those in the most affluent areas. For women in deprived areas, the risk is four times greater.


It’s also widely known that mortality rates for cancer are higher in more deprived areas, and people have worse survival rates in places where smoking and alcohol abuse is more prevalent. Heroin and crack cocaine addiction and deaths from drug overdoses are also strongly associated with deprivation.

The greater number of deaths from accidents in the north should be considered in the context of transport infrastructure investment, which is heavily skewed towards the south – especially London, which enjoys the lowest mortality in the country. What’s more, if reliable and affordable public transport is not available, people will drive more and expose themselves to higher risk of an accident.

Deaths for young adults in the north of England have been increasing compared to those in the south since the late 1990s, creating new health divides between England’s regions. It seems that persistent social, economic and health inequalities are responsible for a growing trend of psychological distress, despair and risk taking among young northerners. Without major changes, the extreme concentration of power, wealth and opportunity in the south will continue to damage people’s health, and worsen the north-south divide.

The Conversation

Evangelos Kontopantelis, Professor in Data Science and Health Services Research, University of Manchester

This article is republished from The Conversation under a Creative Commons license. Read the original article.