With Falcon Heavy, SpaceX staged an amazing launch – but what about the environmental impact?

Falcon Heavy lifts off on Tuesday 6 February. Image: Getty.

SpaceX has now launched the most powerful spacecraft since the Apollo era – the Falcon Heavy rocket – setting the bar for future space launches. The most important thing about this reusable spacecraft is that it can carry a payload equivalent to sending five double-decker London buses into space – which will be invaluable for future manned space exploration or in sending bigger satellites into orbit.

Falcon Heavy essentially comprises three previously tested rockets strapped together to create one giant spacecraft. The launch drew massive international audiences – but while it was an amazing event to witness, there are some important potential drawbacks that must be considered as we assess the impact of this mission on space exploration.

But let’s start by looking at some of the many positives. Falcon Heavy is capable of taking 68 tonnes of equipment into orbit close to the Earth. The current closest competitor is the Delta IV heavy which has a payload equivalent of 29 tonnes. So Falcon Heavy represents a big step forward in delivering ever larger satellites or manned missions out to explore our solar system. For the purposes of colonising Mars or the moon, this is a welcome and necessary development.

The launch itself, the views from the payload and the landing of the booster rockets can only be described as stunning. The chosen payload was a Tesla Roadster vehicle belonging to Space X founder and CEO Elon Musk – with a dummy named “Starman” sitting in the driver’s seat along with plenty of cameras.

This sort of launch spectacle gives a much needed public engagement boost to the space industry that has not been seen since the time of the space race in the 1960s. As a side effect this camera feed from the payload also provided yet another proof that the Earth is not flat – a subject about which Musk has previously been vocal.

The fact that this is a fully reusable rocket is also an exciting development. While vehicles such as the Space Shuttle have been reusable, their launch vehicles have not. That means their launches resulted in a lot of rocket boosters and main fuel tanks either burning up in the atmosphere or sitting on the bottom of the ocean (some are recovered).

This recovery massively reduces the launch cost for both exploration and scientific discovery. The Falcon Heavy has been promoted as providing a cost of roughly $1,300 per kg of payload, while the space shuttle cost approximately $60,000 per kg. The impact this price drop has for innovative new space products and research is groundbreaking. The rocket boosters on this test flight had a controlled and breathtakingly simultaneous landing onto the launch pad.


Environmental impact

So what could possibly be wrong with this groundbreaking test flight? While visually appealing, cheaper and a major technological advancement, what about the environmental impact? The rocket is reusable, which means cutting down the resources required for the metal body of the rocket. However, the mass of most rockets are more than 95 per cent fuel. Building bigger rockets with bigger payloads means more fuel is used for each launch. The current fuel for Falcon Heavy is RP-1 (a refined kerosene) and liquid oxygen, which creates a lot of carbon dioxide when burnt.

The amount of kerosene in three Falcon 9 rockets is roughly 440 tonnes and RP-1 has a 34 per cent carbon content. This amount of carbon is a drop in the ocean compared to global industrial emissions as a whole, but if the SpaceX’s plan for a rocket launch every two weeks comes to fruition, this amount of carbon (approximately 4,000 tonnes per year) will rapidly become a bigger problem.

Space hazards

The car test payload is also something of an issue. The vehicle has been scheduled to head towards Mars, but what has not been made clear is what is going to happen to it afterwards. Every modern space mission is required to think about clearing up after itself. In the cases of planetary or lunar satellites this inevitably results in either a controlled burn-up in the atmosphere, or a direct impact with the body they orbit.

Space debris is rapidly becoming one of the biggest problems we face – there are more than 150m objects that need tracking to ensure as few collisions with working spacecraft as possible. The result of any impact or degradation of the car near Mars could start creating debris at the red planet, meaning that the pollution of another planet has already begun.

Space Junk. Image: David Shikomba/Wikipedia/creative commons.

However, current reports suggest that the rocket may have overshot its trajectory, meaning the vehicle will head towards the asteroid belt rather than Mars. This is probably going to mean a collision is inevitable. The scattering of tiny fragments of an electric vehicle is, at minimum, pollution – and at worst, a safety hazard for future missions. Where these fragments end up will be hard to predict – and hence troublesome for future satellite launches to Mars, Saturn or Jupiter. The debris could be drawn by the gravity of Mars, asteroids or even swept away with the solar wind.

What is also unclear is whether the car was built in a perfect clean room. If not there is the risk that bacteria from Earth may spread through the solar system after a collision. This would be extremely serious, given that we are currently planning to search for life on neighbouring bodies such as Mars and Jupiter’s moon Europa. If microorganisms were found there we may never know whether they actually came from Earth in the first place.

The ConversationOf course, these issues don’t affect my sense of excitement and wonder at watching the amazing launch. The potential advantages of this large-scale rocket are incredible, but private space firms must also be aware that the potential negative impacts (both in space and on Earth) are just as large.

Ian Whittaker, Lecturer, Nottingham Trent University.

This article was originally published on The Conversation. Read the original article.

 
 
 
 

What’s killing northerners?

The Angel of the North. Image: Getty.

There is a stark disparity in wealth and health between people in the north and south of England, commonly referred to as England’s “north-south divide”. The causes of this inequality are complex; it’s influenced by the environment, jobs, migration and lifestyle factors – as well as the long-term political power imbalances, which have concentrated resources and investment in the south, especially in and around London.

Life expectancy is also lower in the north, mainly because the region is more deprived. But new analysis of national mortality data highlights a shockingly large mortality gap between young adults, aged 25 to 44, living in the north and south of England. This gap first emerged in the late 1990s, and seems to have been growing ever since.

In 1995, there were 2% more deaths among northerners aged 25 to 34 than southerners (in other words, 2% “excess mortality”). But by 2015, northerners in this age group were 29% more likely to die than their southern counterparts. Likewise, in the 35 to 44 age group, there was 3% difference in mortality between northerners and southerners in 1995. But by 2015, there were 49% more deaths among northerners than southerners in this age group.

Excess mortality in the north compared with south of England by age groups, from 1965 to 2015. Follow the lines to see that people born around 1980 are the ones most affected around 2015.

While mortality increased among northerners aged 25 to 34, and plateaued among 35 to 44-year-olds, southern mortality mainly declined across both age groups. Overall, between 2014 and 2016, northerners aged 25 to 44 were 41% more likely to die than southerners in the same age group. In real terms, this means that between 2014 and 2016, 1,881 more women and 3,530 more men aged between 25 and 44 years died in the north, than in the south.

What’s killing northerners?

To understand what’s driving this mortality gap among young adults, our team of researchers looked at the causes of death from 2014 to 2016, and sorted them into eight groups: accidents, alcohol related, cardiovascular related (heart conditions, diabetes, obesity and so on), suicide, drug related, breast cancer, other cancers and other causes.

Controlling for the age and sex of the population in the north and the south, we found that it was mostly the deaths of northern men contributing to the difference in mortality – and these deaths were caused mainly by cardiovascular conditions, alcohol and drug misuse. Accidents (for men) and cancer (for women) also played important roles.

From 2014 to 2016, northerners were 47% more likely to die for cardiovascular reasons, 109% for alcohol misuse and 60% for drug misuse, across both men and women aged 25 to 44 years old. Although the national rate of death from cardiovascular reasons has dropped since 1981, the longstanding gap between north and south remains.

Death and deprivation

The gap in life expectancy between north and south is usually put down to socioeconomic deprivation. We considered further data for 2016, to find out if this held true for deaths among young people. We found that, while two thirds of the gap were explained by the fact that people lived in deprived areas, the remaining one third could be caused by some unmeasured form of deprivation, or by differences in culture, infrastructure, migration or extreme weather.

Mortality for people aged 25 to 44 years in 2016, at small area geographical level for the whole of England.

Northern men faced a higher risk of dying young than northern women – partly because overall mortality rates are higher for men than for women, pretty much at every age, but also because men tend to be more susceptible to socioeconomic pressures. Although anachronistic, the expectation to have a job and be able to sustain a family weighs more on men. Accidents, alcohol misuse, drug misuse and suicide are all strongly associated with low socioeconomic status.

Suicide risk is twice as high among the most deprived men, compared to the most affluent. Suicide risk has also been associated with unemployment, and substantial increases in suicide have been observed during periods of recession – especially among men. Further evidence tells us that unskilled men between ages 25 and 39 are between ten and 20 times more likely to die from alcohol-related causes, compared to professionals.

Alcohol underpins the steep increase in liver cirrhosis deaths in Britain from the 1990s – which is when the north-south divide in mortality between people aged 25 to 44 also started to emerge. Previous research has shown that men in this age group, who live in the most deprived areas, are five times more likely to die from alcohol-related diseases than those in the most affluent areas. For women in deprived areas, the risk is four times greater.


It’s also widely known that mortality rates for cancer are higher in more deprived areas, and people have worse survival rates in places where smoking and alcohol abuse is more prevalent. Heroin and crack cocaine addiction and deaths from drug overdoses are also strongly associated with deprivation.

The greater number of deaths from accidents in the north should be considered in the context of transport infrastructure investment, which is heavily skewed towards the south – especially London, which enjoys the lowest mortality in the country. What’s more, if reliable and affordable public transport is not available, people will drive more and expose themselves to higher risk of an accident.

Deaths for young adults in the north of England have been increasing compared to those in the south since the late 1990s, creating new health divides between England’s regions. It seems that persistent social, economic and health inequalities are responsible for a growing trend of psychological distress, despair and risk taking among young northerners. Without major changes, the extreme concentration of power, wealth and opportunity in the south will continue to damage people’s health, and worsen the north-south divide.

The Conversation

Evangelos Kontopantelis, Professor in Data Science and Health Services Research, University of Manchester

This article is republished from The Conversation under a Creative Commons license. Read the original article.