To transform Australia’s cities, it should scrap its car parks

A Sydney car park from above. Image: Getty.

Parking may seem like a “pedestrian” topic (pun intended). However, parking is of increasing importance in metropolitan areas worldwide. On average, motor vehicles are parked 95 per cent of the time. Yet most transport analysis focuses on vehicles when they are moving.

Substantial amounts of land and buildings are set aside to accommodate “immobile” vehicles. In Australia, Brisbane provides 25,633 parking spaces in the CBD, Sydney 28,939 and Melbourne 41,687. In high-demand areas, car parks can cost far more than the vehicle itself.

However, parking is not just an Australian problem. By some estimates, 30,000 square kilometres of land is devoted to parking in Europe and 27,000 km² in the US. This parking takes up a large part of city space, much of it highly valued, centrally located land.

Traditionally, transport planners believed that generous parking allocations provided substantial benefits to users. In reality, excessive parking is known to adversely affect both transport and land use. These impacts, along with recent land-use, socioeconomic and technological trends, are prompting cities to start asking some important questions about parking.

Australian planners must engage with emerging trends to help cities work out the best way to reclaim and repurpose parking space in ways that enhance efficiency and liveability while minimising disruption.

Here we chart likely challenges and opportunities created by these trends over coming decades.

Key trends affecting parking space in cities. Image: author provided.

Land use

All Australian cities have policies to encourage densification, consolidation and infill development in their centres. In conjunction, some cities are setting maximum limits on parking to prevent it taking over valuable inner-city properties.

Transit-oriented development (TOD) has also become popular, at least on paper. This is another form of urban consolidation around transit nodes and corridors. It is known to benefit from high-quality urban design, “walkability”, “cyclability” and a mix of functions.

These developments mean that people who live in CBDs, inner-ring suburbs and near public transport stops will use cars less. Consequently, demand for parking will decrease.

Some non-TOD suburbs are trying to replicate inner-city features as well. For example, some suburban shopping centres have introduced paid parking. This is a significant shift from previous eras, when malls guaranteed ample free parking.

Suburbanites who lack easy public transport access will continue to rely on cars. But rather than driving all the way to a CBD, commuters will increasingly opt for park-and-ride at suburban stations, thereby increasing demand for park-and-ride lots at public transport interchanges. However, excessive capacity might hurt rather than help patronage.


Social trends

In addition to land use, several social trends will affect the need for parking.

First, young people are delaying getting drivers’ licences because driving is culturally less important to them than in previous generations.

Second, people of all ages are moving from outer suburbs to inner cities. For many, this means less driving because walking, cycling and public transport are more convenient in inner cities.

 

inally, the emergence of Uber, Lyft and vehicle-sharing arrangements means that people are not buying cars. Research suggests that each car-sharing vehicle removes nine to 13 individually owned vehicles from the road.

Together, these trends point to a reduced need for parking because there will be fewer cars overall.

Technology

The importance of technology in parking is rising – paving the way for “smarter” parking.

The emergence of a host of smartphone apps, such as ParkMe, Kerb, ParkHound and ParkWhiz, has begun to reshape the parking landscape. For the first time, users can identify and reserve parking according to price and location before starting their journeys.

Apps also make available a host of car parks that previously went unused – such as spaces in a residential driveway. This is because there was no mechanism for letting people know these were available.

In addition, smart pricing programs, such as SFPark in San Francisco, periodically adjust meter and garage pricing to match demand. This encourages drivers to park in underused areas and garages and reduces demand in overused areas.

The advent of autonomous vehicles promises to have dramatic impacts on transport and land use, including parking.

According to one school of thought, mobility services will own most autonomous vehicles, rather than individuals, due to insurance and liability issues. If this happens, far fewer vehicles and parking spaces will be needed as most will be “in motion” rather than parked most of the time.

More space for people and places

The Tikku (Finnish for ‘stick’), by architect Marco Casagrande, is a house with a footprint of just 2.5x5m, the size of a car parking space. Image: Casagrande Laboratory.

The next decade promises much change as emerging land-use, socioeconomic and technological trends reshape the need for, and use of, parking. Cities will devote less space to parking and more space to people and places.

Parking lanes will likely be repurposed as cycling lanes, shared streets, parklets, community gardens and even housing. Concrete parking lots, and faceless garages will likely be converted to much-needed residential, commercial and light industrial use.

The ConversationBy transforming parking, much urban land can turn from wasteland into vibrant activity space.

Dorina Pojani, Lecturer in Urban Planning, The University of Queensland; Iderlina Mateo-Babiano, Senior Lecturer in Urban Planning, University of Melbourne; Jonathan Corcoran, Professor, School of Earth and Environmental Sciences, The University of Queensland, and Neil Sipe, Professor of Urban and Regional Planning, The University of Queensland

This article was originally published on The Conversation. Read the original article.

 
 
 
 

Everything you ever wanted to know about the Seoul Metro System but were too afraid to ask

Gwanghwamoon subway station on line 5 in Seoul, 2010. Image: Getty.

Seoul’s metro system carries 7m passengers a day across 1,000 miles of track. The system is as much a regional commuter railway as an urban subway system. Without technically leaving the network, one can travel from Asan over 50 miles to the south of central Seoul, all the way up to the North Korean border 20 miles north of the city.

Fares are incredibly low for a developed country. A basic fare of 1,250 won (about £1) will allow you to travel 10km; it’s only an extra 100 won (about 7p) to travel every additional 5km on most lines.

The trains are reasonably quick: maximum speeds of 62mph and average operating speeds of around 20mph make them comparable to London Underground. But the trains are much more spacious, air conditioned and have wi-fi access. Every station also has protective fences, between platform and track, to prevent suicides and accidents.

The network

The  service has a complex system of ownership and operation. The Seoul Metro Company (owned by Seoul City council) operates lines 5-8 on its own, but lines 1-4 are operated jointly with Korail, the state-owned national rail company. Meanwhile, Line 9 is operated jointly between Trans-Dev (a French company which operates many buses in northern England) and RATP (The Parisian version of TfL).

Then there’s Neotrans, owned by the Korean conglomerate Doosan, which owns and operates the driverless Sinbundang line. The Incheon city government, which borders Seoul to the west, owns and operates Incheon Line 1 and Line 2.

The Airport Express was originally built and owned by a corporation jointly owned by 11 large Korean firms, but is now mostly owned by Korail. The Uijeongbu light railway is currently being taken over by the Uijeongbu city council (that one’s north of Seoul) after the operating company went bankrupt. And the Everline people mover is operated by a joint venture owned by Bombardier and a variety of Korean companies.

Seoul’s subway map. Click to expand. Image: Wikimedia Commons.

The rest of the lines are operated by the national rail operator Korail. The fare structure is either identical or very similar for all of these lines. All buses and trains in the region are accessible with a T-money card, similar to London’s Oyster card. Fares are collected centrally and then distributed back to operators based on levels of usage.

Funding

The Korean government spends around £27bn on transport every year: that works out at 10 per cent more per person than the British government spends.  The Seoul subway’s annual loss of around £200m is covered by this budget.

The main reason the loss is much lower than TfL’s £458m is that, despite Seoul’s lower fares, it also has much lower maintenance costs. The oldest line, Line 1 is only 44 years old.


Higher levels of automation and lower crime rates also mean there are fewer staff. Workers pay is also lower: a newly qualified driver will be paid around £27,000 a year compared to £49,000 in London.

New infrastructure is paid for by central government. However, investment in the capital does not cause the same regional rivalries as it does in the UK for a variety of reasons. Firstly, investment is not so heavily concentrated in the capital. Five other cities have subways; the second city of Busan has an extensive five-line network.

What’s more, while investment is still skewed towards Seoul, it’s a much bigger city than London, and South Korea is physically a much smaller country than the UK (about the size of Scotland and Wales combined). Some 40 per cent of the national population lives on the Seoul network – and everyone else who lives on the mainland can be in Seoul within 3 hours.

Finally, politically the biggest divide in South Korea is between the south-west and the south-east (the recently ousted President Park Geun-Hye won just 11 per cent of the vote in the south west, while winning 69 per cent in the south-east). Seoul is seen as neutral territory.  

Problems

A driverless train on the Shinbundang Line. Image: Wikicommons.

The system is far from perfect. Seoul’s network is highly radial. It’s incredibly cheap and easy to travel from outer lying areas to the centre, and around the centre itself. But travelling from one of Seoul’s satellite cities to another by public transport is often difficult. A journey from central Goyang (population: 1m) to central Incheon (population: 3m) is around 30 minutes by car. By public transport, it takes around 2 hours. There is no real equivalent of the London Overground.

There is also a lack of fast commuter services. The four-track Seoul Line 1 offers express services to Incheon and Cheonan, and some commuter towns south of the city are covered by intercity services. But most large cities of hundreds of thousands of people within commuting distance (places comparable to Reading or Milton Keynes) are reliant on the subway network, and do not have a fast rail link that takes commuters directly to the city centre.

This is changing however with the construction of a system modelled on the Paris RER and London’s Crossrail. The GTX will operate at maximum speed of 110Mph. The first line (of three planned) is scheduled to open in 2023, and will extend from the new town of Ilsan on the North Korean border to the new town of Dongtan about 25km south of the city centre.

The system will stop much less regularly than Crossrail or the RER resulting in drastic cuts in journey times. For example, the time from llsan to Gangnam (of Gangnam Style fame) will be cut from around 1hr30 to just 17 minutes. When the three-line network is complete most of the major cities in the region will have a direct fast link to Seoul Station, the focal point of the GTX as well as the national rail network. A very good public transport network is going to get even better.