Here’s how gaming can help plan the cities of the future

A screenshot from Cities: Skylines. Image: Paradox Interactive.

Games are often looked down upon by people desperately trying to appear grown-up – so any value they have beyond entertainment has historically been widely ignored.

But this attitude is, gradually, changing – and one can see why. The technology behind games has now developed to a point of almost visual realism, and the once simple models that your old, coal-powered PC could barely handle now look positively stone age in comparison to some modern games.

So various industries have been using gaming technology to educate and inspire since as long ago as the 1960s. The simplified model of reality that a game offers can be used to make impenetrable and technical subjects accessible to a wider audience.

Take city planning. For a quarter of a century now, games like the SimCity series have challenged players to design their own city with real life urban problems in mind. In an entertaining way, players are thus introduced to issues like housing density, infrastructure, zoning and disaster prevention – topics which would send most people to sleep if encountered in a classroom. The next generation of city planners have thus encountered the creative aspect of the job from an early age, without being scared away by the mire of technospeak.

Having inspired the little ones, now we need to educate them – and games can help on this front, too. The levels of complexity involved can be ramped up to something more appropriate for those actually learning city planning professionally.

In Cilvia, a game designed by Royal College of Art graduate Johnny Lui, budding architects take on a virtual London city council and try to get their proposed buildings passed the various planning constraints put in their way. SimCityEDU twists the SimCity games to add a more educational slant, allowing teachers to plan lessons and assign students specific simulated urban problems to overcome.

The potential of gaming doesn’t just extend to educating the city planners of tomorrow: it can be used to engage locals in developing the space around them, too. I can’t imagine many people who haven’t thought about how their surrounding environment could be improved – the question is how these ideas can be harnessed.

The Amsterdam-based Play the City attempts to answer this question, by using games to support collaborative decision making on urban design projects. For example, the centre of Khayelitsha, Cape Town’s largest township, was in dire need of a makeover. The market was a jumble of shipping containers, housing the area’s businesses.


Play the City came up with an interactive way of bringing local traders and developers together, to help remodel the market. That way, the communities, who will ultimately use the space, could contribute to its final design; and the developers could be sure they were building something that would actually work.

Khayelitsha was redesigned through the collaboration of around 100 participants – so just imagine what you could do with 3.5m. That’s the number of people playing Cities:Skylines, the 2015 heir to the SimCity crown.

Like its predecessors, the game opens the questions faced by city planners up to the public, and the simulation provided by the game is so accurate it can produce results applicable to the real world.. As designer Karoliina Korppoo explained in her TED talk, if something works in the game, it is highly likely to work in real life, too. In other words, the cities of the future could rely on ideas provided not by the dusty office elites, but crowd sourced through games, to engage the millions of active minds out among the public.

The slightly oxymoronic-sounding ‘serious games’ are those intended for a purpose other than entertainment. It’s perhaps in an attempt to gain un-required legitimacy in the eyes of those who otherwise dismiss gaming that modelling and other educational games are often categorised as such.

But this attempt to distance games from the fun aspect risks undermining the very benefit that city planning games can bring. Such games can engage people otherwise uninterested in the complexity of the city in the possibilities of city planning itself. You can’t do that without fun.

 
 
 
 

Uncertainty is the new normal: the case for resilience in infrastructure

Members of the New York Urban Search and Rescue Task Force One help evacuate people from their homes in Fayetteville, North Carolina, in September 2018. Image: Getty.

The most recent international report on climate change paints a picture of disruption to society unless there are drastic and rapid cuts in greenhouse gas emissions. And although it’s early days, some cities and municipalities are starting to recognise that past conditions can no longer serve as reasonable proxies for the future.

This is particularly true for America’s infrastructure. Highways, water treatment facilities and the power grid are at increasing risk to extreme weather events and other effects of a changing climate.

The problem is that most infrastructure projects, including the Trump administration’s infrastructure revitalisation plan, typically ignore the risks of climate change.

In our work researching sustainability and infrastructure, we encourage and are starting to shift toward designing man-made infrastructure systems with adaptability in mind.

Designing for the past

Infrastructure systems are the front line of defense against flooding, heat, wildfires, hurricanes and other disasters. City planners and citizens often assume that what is built today will continue to function in the face of these hazards, allowing services to continue and to protect us as they have done so in the past. But these systems are designed based on histories of extreme events.

Pumps, for example, are sized based on historical precipitation events. Transmission lines are designed within limits of how much power they can move while maintaining safe operating conditions relative to air temperatures. Bridges are designed to be able to withstand certain flow rates in the rivers they cross. Infrastructure and the environment are intimately connected.

Now, however, the country is more frequently exceeding these historical conditions and is expected to see more frequent and intense extreme weather events. Said another way, because of climate change, natural systems are now changing faster than infrastructure.

How can infrastructure systems adapt? First let’s consider the reasons infrastructure systems fail at extremes:

  • The hazard exceeds design tolerances. This was the case of Interstate 10 flooding in Phoenix in fall 2014, where the intensity of the rainfall exceeded design conditions.

  • During these times there is less extra capacity across the system: When something goes wrong there are fewer options for managing the stressor, such as rerouting flows, whether it’s water, electricity or even traffic.

  • We often demand the most from our infrastructure during extreme events, pushing systems at a time when there is little extra capacity.

Gradual change also presents serious problems, partly because there is no distinguishing event that spurs a call to action. This type of situation can be especially troublesome in the context of maintenance backlogs and budget shortfalls which currently plague many infrastructure systems. Will cities and towns be lulled into complacency only to find that their long-lifetime infrastructure are no longer operating like they should?

Currently the default seems to be securing funding to build more of what we’ve had for the past century. But infrastructure managers should take a step back and ask what our infrastructure systems need to do for us into the future.


Agile and flexible by design

Fundamentally new approaches are needed to meet the challenges not only of a changing climate, but also of disruptive technologies.

These include increasing integration of information and communication technologies, which raises the risk of cyberattacks. Other emerging technologies include autonomous vehicles and drones as well as intermittent renewable energy and battery storage in the place of conventional power systems. Also, digitally connected technologies fundamentally alter individuals’ cognition of the world around us: consider how our mobile devices can now reroute us in ways that we don’t fully understand based on our own travel behavior and traffic across a region.

Yet our current infrastructure design paradigms emphasise large centralized systems intended to last for decades and that can withstand environmental hazards to a preselected level of risk. The problem is that the level of risk is now uncertain because the climate is changing, sometimes in ways that are not very well-understood. As such, extreme events forecasts may be a little or a lot worse.

Given this uncertainty, agility and flexibility should be central to our infrastructure design. In our research, we’ve seen how a number of cities have adopted principles to advance these goals already, and the benefits they provide.

A ‘smart’ tunnel in Kuala Lumpur is designed to supplement the city’s stormwater drainage system. Image: David Boey/creative commons.

In Kuala Lampur, traffic tunnels are able to transition to stormwater management during intense precipitation events, an example of multifunctionality.

Across the U.S., citizen-based smartphone technologies are beginning to provide real-time insights. For instance, the CrowdHydrology project uses flooding data submitted by citizens that the limited conventional sensors cannot collect.

Infrastructure designers and managers in a number of U.S. locations, including New York, Portland, Miami and Southeast Florida, and Chicago, are now required to plan for this uncertain future – a process called roadmapping. For example, Miami has developed a $500m plan to upgrade infrastructure, including installing new pumping capacity and raising roads to protect at-risk oceanfront property.

These competencies align with resilience-based thinking and move the country away from our default approaches of simply building bigger, stronger or more redundant.

Planning for uncertainty

Because there is now more uncertainty with regard to hazards, resilience instead of risk should be central to infrastructure design and operation in the future. Resilience means systems can withstand extreme weather events and come back into operation quickly.

Microgrid technology allows individual buildings to operate in the event of a broader power outage and is one way to make the electricity system more resilient. Image: Amy Vaughn/U.S. Department of Energy/creative commons.

This means infrastructure planners cannot simply change their design parameter – for example, building to withstand a 1,000-year event instead of a 100-year event. Even if we could accurately predict what these new risk levels should be for the coming century, is it technically, financially or politically feasible to build these more robust systems?

This is why resilience-based approaches are needed that emphasise the capacity to adapt. Conventional approaches emphasise robustness, such as building a levee that is able to withstand a certain amount of sea level rise. These approaches are necessary but given the uncertainty in risk we need other strategies in our arsenal.

For example, providing infrastructure services through alternative means when our primary infrastructure fail, such as deploying microgrids ahead of hurricanes. Or, planners can design infrastructure systems such that when they fail, the consequences to human life and the economy are minimised.

The Netherlands has changed its system of dykes and flood management in certain areas to better sustain flooding.

This is a practice recently implemented in the Netherlands, where the Rhine delta rivers are allowed to flood but people are not allowed to live in the flood plain and farmers are compensated when their crops are lost.

Uncertainty is the new normal, and reliability hinges on positioning infrastructure to operate in and adapt to this uncertainty. If the country continues to commit to building last century’s infrastructure, we can continue to expect failures of these critical systems, and the losses that come along with them.

The Conversation

Mikhail Chester, Associate Professor of Civil, Environmental, and Sustainable Engineering, Arizona State University; Braden Allenby, President's Professor and Lincoln Professor of Engineering and Ethics, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, and Samuel Markolf, Postdoctoral Research Associate, Urban Resilience to Extremes Sustainability Research Network, Arizona State University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.