“The change of use can add to the history of a place, rather than diminishing it”

BBC Television Centre, 2009: the site has since been sold to private developers. Image: PanHard/Wikimedia Commons.

The news last week that the BBC is to close Maida Vale Studios and relocate live music to Stratford in East London was received with exactly the kind of enthusiasm long time media watchers have come to expect from this kind of thing – with words like “disgusting” and “misguided”, and pleas for the preservation of our cultural heritage. Hashtag campaigns and requests for listing have been duly launched into the ether.

The responses from musicians and music fans echoed those from TV historians to the partial conversion of the BBC's Television Centre to private flats over recent years, with occasional outbursts of “I can't bear to look at it” and “It makes me feel sad when I go past” continuing to this day.

Now I'm not an architect, property developer, TV producer or internationally renowned rock guitarist, sadly; so I can't speak to whether either of these land deals are particularly good value, or the claims and counter-claims as to the long term viability of the old facilities and their new replacements. Equally, there's a whole separate argument about the fact that such London buildings are usually converted into high-end oligarch hives that are at best a symptom and at worse a driver of inequalities within our cities and society as a whole.

What I do question, though, is the idea that preserving heritage in our built environment requires continuity of use. There is of course an undeniable buzz for people working in a particular creative industry to occupy the spaces and walk the corridors their predecessors did, to be part of a history. When change must come, there's also a case for excellent examples of workplaces to be preserved as museums or heritage sites.

But the impulse to freeze a building in its current use, fixing its purpose like the glue-wielding bad guy in The Lego Movie, cuts against the city as a living, evolving place that changes with the requirements of its population and industries.


More than that: it’s through allowing changes of use, by preserving historic facades and putting up plaques but by allowing the buildings to be reshaped to contemporary needs, that history accumulates in the architecture of our older cities.

I live in Exeter, I used to live in London, and, when I was young, my favourite city near to my home town was York. All three cities date back to before Roman times, and are places where the medieval has been partially over-written by the eras that followed, with new development filling the spaces left by fire and war and other disasters. As the commercial areas of a city expand, old domestic dwellings find themselves reshaped into business properties, while further from these commercial centres former places of work become domestic properties. Hospitals become restaurants, old houses become shops, central tenements become office space and, yes, the factories and warehouses and studios of industries that have collapsed or moved on are split into apartments.

At worst these changes of use can feel like a crushing of the imagination. A place of once fervent worship might deserve better than becoming a Wetherspoons. We do not respect the toil and horrors that our historic docks represent by divvying up the buildings into cute riverside apartments with high price tags.

At best, though, there's a pleasure in coming across a building that has changed use over the centuries and decades; that bears a unique character from having spaces that bear the marks of previous use; that has quirks of layout that you wouldn't find in a building designed precisely for its current requirements. The change of use can add to the history of a place, rather than diminishing it.

The preservation of old signage, commemorative plaques and clues in street and square names all contribute to the idea that a city has a long, changing history. The fact that new uses are found for old buildings, that we can remake our buildings for a new use rather than just demolishing them and starting over, preserves history in a different way to heritage centres and museums. It weaves the past into the present, creating a sense of historic continuity that is layered and evolving. The separation between the preserved past and the under-construction future is dissolved – and we can see ourselves within a city's history rather than simply observing it.

 
 
 
 

Uncertainty is the new normal: the case for resilience in infrastructure

Members of the New York Urban Search and Rescue Task Force One help evacuate people from their homes in Fayetteville, North Carolina, in September 2018. Image: Getty.

The most recent international report on climate change paints a picture of disruption to society unless there are drastic and rapid cuts in greenhouse gas emissions. And although it’s early days, some cities and municipalities are starting to recognise that past conditions can no longer serve as reasonable proxies for the future.

This is particularly true for America’s infrastructure. Highways, water treatment facilities and the power grid are at increasing risk to extreme weather events and other effects of a changing climate.

The problem is that most infrastructure projects, including the Trump administration’s infrastructure revitalisation plan, typically ignore the risks of climate change.

In our work researching sustainability and infrastructure, we encourage and are starting to shift toward designing man-made infrastructure systems with adaptability in mind.

Designing for the past

Infrastructure systems are the front line of defense against flooding, heat, wildfires, hurricanes and other disasters. City planners and citizens often assume that what is built today will continue to function in the face of these hazards, allowing services to continue and to protect us as they have done so in the past. But these systems are designed based on histories of extreme events.

Pumps, for example, are sized based on historical precipitation events. Transmission lines are designed within limits of how much power they can move while maintaining safe operating conditions relative to air temperatures. Bridges are designed to be able to withstand certain flow rates in the rivers they cross. Infrastructure and the environment are intimately connected.

Now, however, the country is more frequently exceeding these historical conditions and is expected to see more frequent and intense extreme weather events. Said another way, because of climate change, natural systems are now changing faster than infrastructure.

How can infrastructure systems adapt? First let’s consider the reasons infrastructure systems fail at extremes:

  • The hazard exceeds design tolerances. This was the case of Interstate 10 flooding in Phoenix in fall 2014, where the intensity of the rainfall exceeded design conditions.

  • During these times there is less extra capacity across the system: When something goes wrong there are fewer options for managing the stressor, such as rerouting flows, whether it’s water, electricity or even traffic.

  • We often demand the most from our infrastructure during extreme events, pushing systems at a time when there is little extra capacity.

Gradual change also presents serious problems, partly because there is no distinguishing event that spurs a call to action. This type of situation can be especially troublesome in the context of maintenance backlogs and budget shortfalls which currently plague many infrastructure systems. Will cities and towns be lulled into complacency only to find that their long-lifetime infrastructure are no longer operating like they should?

Currently the default seems to be securing funding to build more of what we’ve had for the past century. But infrastructure managers should take a step back and ask what our infrastructure systems need to do for us into the future.


Agile and flexible by design

Fundamentally new approaches are needed to meet the challenges not only of a changing climate, but also of disruptive technologies.

These include increasing integration of information and communication technologies, which raises the risk of cyberattacks. Other emerging technologies include autonomous vehicles and drones as well as intermittent renewable energy and battery storage in the place of conventional power systems. Also, digitally connected technologies fundamentally alter individuals’ cognition of the world around us: consider how our mobile devices can now reroute us in ways that we don’t fully understand based on our own travel behavior and traffic across a region.

Yet our current infrastructure design paradigms emphasise large centralized systems intended to last for decades and that can withstand environmental hazards to a preselected level of risk. The problem is that the level of risk is now uncertain because the climate is changing, sometimes in ways that are not very well-understood. As such, extreme events forecasts may be a little or a lot worse.

Given this uncertainty, agility and flexibility should be central to our infrastructure design. In our research, we’ve seen how a number of cities have adopted principles to advance these goals already, and the benefits they provide.

A ‘smart’ tunnel in Kuala Lumpur is designed to supplement the city’s stormwater drainage system. Image: David Boey/creative commons.

In Kuala Lampur, traffic tunnels are able to transition to stormwater management during intense precipitation events, an example of multifunctionality.

Across the U.S., citizen-based smartphone technologies are beginning to provide real-time insights. For instance, the CrowdHydrology project uses flooding data submitted by citizens that the limited conventional sensors cannot collect.

Infrastructure designers and managers in a number of U.S. locations, including New York, Portland, Miami and Southeast Florida, and Chicago, are now required to plan for this uncertain future – a process called roadmapping. For example, Miami has developed a $500m plan to upgrade infrastructure, including installing new pumping capacity and raising roads to protect at-risk oceanfront property.

These competencies align with resilience-based thinking and move the country away from our default approaches of simply building bigger, stronger or more redundant.

Planning for uncertainty

Because there is now more uncertainty with regard to hazards, resilience instead of risk should be central to infrastructure design and operation in the future. Resilience means systems can withstand extreme weather events and come back into operation quickly.

Microgrid technology allows individual buildings to operate in the event of a broader power outage and is one way to make the electricity system more resilient. Image: Amy Vaughn/U.S. Department of Energy/creative commons.

This means infrastructure planners cannot simply change their design parameter – for example, building to withstand a 1,000-year event instead of a 100-year event. Even if we could accurately predict what these new risk levels should be for the coming century, is it technically, financially or politically feasible to build these more robust systems?

This is why resilience-based approaches are needed that emphasise the capacity to adapt. Conventional approaches emphasise robustness, such as building a levee that is able to withstand a certain amount of sea level rise. These approaches are necessary but given the uncertainty in risk we need other strategies in our arsenal.

For example, providing infrastructure services through alternative means when our primary infrastructure fail, such as deploying microgrids ahead of hurricanes. Or, planners can design infrastructure systems such that when they fail, the consequences to human life and the economy are minimised.

The Netherlands has changed its system of dykes and flood management in certain areas to better sustain flooding.

This is a practice recently implemented in the Netherlands, where the Rhine delta rivers are allowed to flood but people are not allowed to live in the flood plain and farmers are compensated when their crops are lost.

Uncertainty is the new normal, and reliability hinges on positioning infrastructure to operate in and adapt to this uncertainty. If the country continues to commit to building last century’s infrastructure, we can continue to expect failures of these critical systems, and the losses that come along with them.

The Conversation

Mikhail Chester, Associate Professor of Civil, Environmental, and Sustainable Engineering, Arizona State University; Braden Allenby, President's Professor and Lincoln Professor of Engineering and Ethics, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, and Samuel Markolf, Postdoctoral Research Associate, Urban Resilience to Extremes Sustainability Research Network, Arizona State University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.