The amateur map designer who remade London's tube map takes on the "night tube"

A detail from the redesigned version of London's night tube map. Image: SameBoat/Wikimedia Commons.

Bob Woodward and Carl Bernstein had “Deep Throat”. Here at CityMetric, we have “SameBoat” – the anonymous Wikipedia user whose redesign of London’s tube map was, we felt, so much better than the official version.

Deep Throat kept his identity secret for over 30 years, before finally coming clean as FBI agent Mark Felt in 2005. SameBoat, though, has come forward after barely more than a month. He's the Hong Kong-based graphic designer and sound engineer by the name of Thomas Lee, who designs metro maps in his spare time.

Obviously we're too modest to say that the whole affair shows we’re better reporters than Woodward and Bernstein. That's for you to decide.

Anyway – the reason we can bring you this exclusive information is that, this morning, SameBoat got in contact to let us know that he'd done a “night tube” version of his map, too.

Transport for London's own night tube map is a fairly significant redesign of its (increasingly, eye-gougingly awful) day tube map. SameBoat's isn't – it's a version of his day tube map, but with most of the lines faded out. The goal, he told us in an email, was to keep the sense of how the lines interrelated.

Here's the result:

Image: SameBoat/Wikimedia Commons.

And here, since you were wondering, is the official TfL version.

 

As to which of the two maps we prefer, we can't quite decide. TfL's night tube map is undeniably stylish. It shows the network with undeniable clarity, too. (Those are two qualities that have been singularly absent from the main tube map of late.) SameBoat's amateur version is less polished.


And yet – there probably is some benefit in showing the lines that aren't open at night. Regular traveller's eyes will be instantly drawn to the part of the map where they'd expect to see their station. Showing lines as faded may actually communicate the idea of "no service" more quickly than not showing them at all.

Here's what SameBoat (or "Lee", as we should probably call him now) says about his latest map:

There is an ongoing debate [about whether] TfL should redraw the Night Tube map from scratch instead of basing it on the daytime version with all the seemingly unnecessary kinks for ducking the non-existent daytime elements.

I think making the map from scratch is much easier for the cartographers because there are only five main lines. But that would increase the travellers's burden of knowledge about the newly twisted geography of the night time topological map.

I chose to preserve the daytime routes but make them much paler. [They] serve as geographic indicators without distracting readers from the night time routes.

Incidentally, Lee also noted that he was quite happy for us to describe him as an "amateur map designer":

Harry Beck wasn't a professional graphic designer to begin with, so I don't feel any shame at all.

Fair point.

Here's a clip of Sameboat's new tube map. You can see the full thing here.

Want more tube maps? Really? Are you sure? Oh well, if you insist.

 
 
 
 

How bad is the air pollution on the average subway network?

The New York Subway. Image: Getty.

Four more major Indian cities will soon have their own metro lines, the country’s government has announced. On the other side of the Himalayas, Shanghai is building its 14th subway line, set to open in 2020, adding 38.5 km and 32 stations to the world’s largest subway network. And New Yorkers can finally enjoy their Second Avenue Subway line after waiting for almost 100 years for it to arrive.

In Europe alone, commuters in more than 60 cities use rail subways. Internationally, more than 120m people commute by them every day. We count around 4.8m riders per day in London, 5.3m in Paris, 6.8m in Tokyo, 9.7m in Moscow and 10m in Beijing.

Subways are vital for commuting in crowded cities, something that will become more and more important over time – according to a United Nations 2014 report, half of the world’s population is now urban. They can also play a part in reducing outdoor air pollution in large metropolises by helping to reduce motor-vehicle use.

Large amounts of breathable particles (particulate matter, or PM) and nitrogen dioxide (NO2), produced in part by industrial emissions and road traffic, are responsible for shortening the lifespans of city dwellers. Public transportation systems such as subways have thus seemed like a solution to reduce air pollution in the urban environment.

But what is the air like that we breathe underground, on the rail platforms and inside trains?

Mixed air quality

Over the last decade, several pioneering studies have monitored subway air quality across a range of cities in Europe, Asia and the Americas. The database is incomplete, but is growing and is already valuable.

Subway, Tokyo, 2016. Image: Mildiou/Flickr/creative commons.

For example, comparing air quality on subway, bus, tram and walking journeys from the same origin to the same destination in Barcelona, revealed that subway air had higher levels of air pollution than in trams or walking in the street, but slightly lower than those in buses. Similar lower values for subway environments compared to other public transport modes have been demonstrated by studies in Hong Kong, Mexico City, Istanbul and Santiago de Chile.

Of wheels and brakes

Such differences have been attributed to different wheel materials and braking mechanisms, as well as to variations in ventilation and air conditioning systems, but may also relate to differences in measurement campaign protocols and choice of sampling sites.

Second Avenue Subway in the making, New York, 2013. Image: MTA Capital Construction/Rehema Trimiew/Wikimedia Commons.

Key factors influencing subway air pollution will include station depth, date of construction, type of ventilation (natural/air conditioning), types of brakes (electromagnetic or conventional brake pads) and wheels (rubber or steel) used on the trains, train frequency and more recently the presence or absence of platform screen-door systems.

In particular, much subway particulate matter is sourced from moving train parts such as wheels and brake pads, as well as from the steel rails and power-supply materials, making the particles dominantly iron-containing.


To date, there is no clear epidemiological indication of abnormal health effects on underground workers and commuters. New York subway workers have been exposed to such air without significant observed impacts on their health, and no increased risk of lung cancer was found among subway train drivers in the Stockholm subway system.

But a note of caution is struck by the observations of scholars who found that employees working on the platforms of Stockholm underground, where PM concentrations were greatest, tended to have higher levels of risk markers for cardiovascular disease than ticket sellers and train drivers.

The dominantly ferrous particles are mixed with particles from a range of other sources, including rock ballast from the track, biological aerosols (such as bacteria and viruses), and air from the outdoors, and driven through the tunnel system on turbulent air currents generated by the trains themselves and ventilation systems.

Comparing platforms

The most extensive measurement programme on subway platforms to date has been carried out in the Barcelona subway system, where 30 stations with differing designs were studied under the frame of IMPROVE LIFE project with additional support from the AXA Research Fund.

It reveals substantial variations in particle-matter concentrations. The stations with just a single tunnel with one rail track separated from the platform by glass barrier systems showed on average half the concentration of such particles in comparison with conventional stations, which have no barrier between the platform and tracks. The use of air-conditioning has been shown to produce lower particle-matter concentrations inside carriages.

In trains where it is possible to open the windows, such as in Athens, concentrations can be shown generally to increase inside the train when passing through tunnels and more specifically when the train enters the tunnel at high speed.

According to their construction material, you may breath different kind of particles on various platforms worldwide. Image: London Tube/Wikimedia Commons.

Monitoring stations

Although there are no existing legal controls on air quality in the subway environment, research should be moving towards realistic methods of mitigating particle pollution. Our experience in the Barcelona subway system, with its considerable range of different station designs and operating ventilation systems, is that each platform has its own specific atmospheric micro environment.

To design solutions, one will need to take into account local conditions of each station. Only then can researchers assess the influences of pollution generated from moving train parts.

The ConversationSuch research is still growing and will increase as subway operating companies are now more aware about how cleaner air leads directly to better health for city commuters.

Fulvio Amato is a tenured scientist at the Spanish National Research CouncilTeresa Moreno is a tenured scientist at the Institute of Environmental Assessment and Water Research (IDAEA), Spanish Scientific Research Council CSIC.

This article was originally published on The Conversation. Read the original article.