“Cities are designed by men, for men”: why local government needs more female leadership

Just one of the issues women face more than men. Image: Ardfern/Wikimedia Commons.

Cities are largely designed by men, and for men. There is nothing unusual in this – we instinctively design, plan and make policy that reflects our own experiences and biases. However, this has led to places that don’t work as well for women as they should.

This has safety implications: clearly anyone who de-prioritises the importance of streetlights has never had to walk home in the dark worrying about the footsteps behind them, and while men are attacked and mugged as well, the danger to women is significantly greater. But even leaving that aside, there are numerous less well documented issues in cities that affect women.

And even simple things like cracked and crumbling pavements have a greater detrimental impact on women. The vast majority of people pushing either prams or wheelchairs are women, and while having to navigate a giant set of wheels around tree roots and potholes is unpleasant enough for the person being pushed, getting around shouldn’t have to be the daily equivalent of Ninja Warrior.

The perpetual closure of public toilets affects women more than men. The fact that women are still most likely to be carers – let’s not forget that less than 2 per cent of men have taken the option of shared parental leave – means that public access to toilets becomes an issue that disproportionately affects women. It makes it difficult to leave the house if you don’t know where you will be able to access changing facilities. Reducing amenities like these ends up confining women to their homes or places they know will be convenient. 

This is why we need more women at senior levels of local government, to improve the standard of our places for women. So for International Women’s Day, NLGN has made a series of films about the experiences of women in local government. And, in particular, we looked at the issue of why diversity is important.


As councillor Judith Blake, the leader of Leeds city council, said in one our films: “Too many areas of policy covered by local government are male dominated – infrastructure, highways, planning… The most important thing is to put women in positions of responsibility in those areas, leading by example, reflecting the needs of their communities, and making a difference.”

And while there are a huge number of women working in local government, reaching the senior levels of management is still much rarer than it should be. But council workplaces are becoming more open and less hierarchical, there is a greater allowance for flexible working, and many women who do reach the top are keen to mentor and support those at the beginning of their careers.

It is crucial that local government does what it can to support women in their careers, at all stages and levels of seniority. Until we have senior management that is representative of the area it creates policy for, our places won’t improve in the ways that they need to.

Claire Porter is head of external affair at NLGN. The three films are available on the NLGN YouTube channel.

Want more of this stuff? Follow CityMetric on Twitter or Facebook.

 
 
 
 

How bad is the air pollution on the average subway network?

The New York Subway. Image: Getty.

Four more major Indian cities will soon have their own metro lines, the country’s government has announced. On the other side of the Himalayas, Shanghai is building its 14th subway line, set to open in 2020, adding 38.5 km and 32 stations to the world’s largest subway network. And New Yorkers can finally enjoy their Second Avenue Subway line after waiting for almost 100 years for it to arrive.

In Europe alone, commuters in more than 60 cities use rail subways. Internationally, more than 120m people commute by them every day. We count around 4.8m riders per day in London, 5.3m in Paris, 6.8m in Tokyo, 9.7m in Moscow and 10m in Beijing.

Subways are vital for commuting in crowded cities, something that will become more and more important over time – according to a United Nations 2014 report, half of the world’s population is now urban. They can also play a part in reducing outdoor air pollution in large metropolises by helping to reduce motor-vehicle use.

Large amounts of breathable particles (particulate matter, or PM) and nitrogen dioxide (NO2), produced in part by industrial emissions and road traffic, are responsible for shortening the lifespans of city dwellers. Public transportation systems such as subways have thus seemed like a solution to reduce air pollution in the urban environment.

But what is the air like that we breathe underground, on the rail platforms and inside trains?

Mixed air quality

Over the last decade, several pioneering studies have monitored subway air quality across a range of cities in Europe, Asia and the Americas. The database is incomplete, but is growing and is already valuable.

Subway, Tokyo, 2016. Image: Mildiou/Flickr/creative commons.

For example, comparing air quality on subway, bus, tram and walking journeys from the same origin to the same destination in Barcelona, revealed that subway air had higher levels of air pollution than in trams or walking in the street, but slightly lower than those in buses. Similar lower values for subway environments compared to other public transport modes have been demonstrated by studies in Hong Kong, Mexico City, Istanbul and Santiago de Chile.

Of wheels and brakes

Such differences have been attributed to different wheel materials and braking mechanisms, as well as to variations in ventilation and air conditioning systems, but may also relate to differences in measurement campaign protocols and choice of sampling sites.

Second Avenue Subway in the making, New York, 2013. Image: MTA Capital Construction/Rehema Trimiew/Wikimedia Commons.

Key factors influencing subway air pollution will include station depth, date of construction, type of ventilation (natural/air conditioning), types of brakes (electromagnetic or conventional brake pads) and wheels (rubber or steel) used on the trains, train frequency and more recently the presence or absence of platform screen-door systems.

In particular, much subway particulate matter is sourced from moving train parts such as wheels and brake pads, as well as from the steel rails and power-supply materials, making the particles dominantly iron-containing.


To date, there is no clear epidemiological indication of abnormal health effects on underground workers and commuters. New York subway workers have been exposed to such air without significant observed impacts on their health, and no increased risk of lung cancer was found among subway train drivers in the Stockholm subway system.

But a note of caution is struck by the observations of scholars who found that employees working on the platforms of Stockholm underground, where PM concentrations were greatest, tended to have higher levels of risk markers for cardiovascular disease than ticket sellers and train drivers.

The dominantly ferrous particles are mixed with particles from a range of other sources, including rock ballast from the track, biological aerosols (such as bacteria and viruses), and air from the outdoors, and driven through the tunnel system on turbulent air currents generated by the trains themselves and ventilation systems.

Comparing platforms

The most extensive measurement programme on subway platforms to date has been carried out in the Barcelona subway system, where 30 stations with differing designs were studied under the frame of IMPROVE LIFE project with additional support from the AXA Research Fund.

It reveals substantial variations in particle-matter concentrations. The stations with just a single tunnel with one rail track separated from the platform by glass barrier systems showed on average half the concentration of such particles in comparison with conventional stations, which have no barrier between the platform and tracks. The use of air-conditioning has been shown to produce lower particle-matter concentrations inside carriages.

In trains where it is possible to open the windows, such as in Athens, concentrations can be shown generally to increase inside the train when passing through tunnels and more specifically when the train enters the tunnel at high speed.

According to their construction material, you may breath different kind of particles on various platforms worldwide. Image: London Tube/Wikimedia Commons.

Monitoring stations

Although there are no existing legal controls on air quality in the subway environment, research should be moving towards realistic methods of mitigating particle pollution. Our experience in the Barcelona subway system, with its considerable range of different station designs and operating ventilation systems, is that each platform has its own specific atmospheric micro environment.

To design solutions, one will need to take into account local conditions of each station. Only then can researchers assess the influences of pollution generated from moving train parts.

The ConversationSuch research is still growing and will increase as subway operating companies are now more aware about how cleaner air leads directly to better health for city commuters.

Fulvio Amato is a tenured scientist at the Spanish National Research CouncilTeresa Moreno is a tenured scientist at the Institute of Environmental Assessment and Water Research (IDAEA), Spanish Scientific Research Council CSIC.

This article was originally published on The Conversation. Read the original article.