To save the planet, we need to cut methane emissions from agriculture, too

Mmm, farmy. Image: Getty.

Methane concentrations in the atmosphere are growing faster than any time in the past 20 years. The increase is largely driven by the growth in food production, according to the Global Methane Budget released in December. Methane is contributing less to global warming than carbon dioxide (CO₂), but it is a very powerful greenhouse gas.

Since 2014, methane concentrations in the atmosphere have begun to track the most carbon-intensive pathways developed for the 21st century by the Intergovernmental Panel on Climate Change (IPCC). The growth of methane emissions from human activities comes at a time when CO₂ emissions from burning fossil fuels have stalled over the past three years.

If these trends continue, methane growth could become a dangerous climate wildcard, overwhelming efforts to reduce CO₂ in the short term.

Methane concentration pathways from IPCC and observations from the NOAA measuring network (Saunois et al 2016, Environmental Research Letters). The projected global warming range by the year 2100, relative to 1850-1900, is shown for each pathway.

In two papers published on 12 December (see here and here), we bring together the most comprehensive ensemble of data and models to build a complete picture of methane and where it is going – the global methane budget. This includes all major natural and human sources of methane, and the places where it ends up in methane “sinks” such as the atmosphere and the land.

This work is a companion effort to the global CO₂ budget published annually, both by international scientists under the Global Carbon Project.

Where does all the methane go?

Methane is emitted from multiple sources, mostly from land, and accumulates in the atmosphere. In our greenhouse gas budgets, we look at two important numbers.

First, we look at emissions (which activities are producing greenhouse gases).

Second, we look at where this gas ends up. The important quantity here is the accumulation (concentration) of methane in the atmosphere, which leads to global warming. The accumulation results from the difference between total emissions and the destruction of methane in the atmosphere and uptake by soil bacteria.

CO₂ emissions take centre stage in most discussions to limit climate change. The focus is well justified, given that CO₂ is responsible for more than 80 per cent of global warming due to greenhouse gases. The concentration of CO₂ in the atmosphere (now around 400 parts per million) has risen by 44 per cent since the Industrial Revolution (around the year 1750).

While CO₂ in the atmosphere has increased steadily, methane concentrations grew relatively slowly throughout the 2000s, but since 2007 have grown ten times faster. Methane increased faster still in 2014 and 2015.

Remarkably, this growth is occurring on top of methane concentrations that are already 150 per cent higher than at the start of the Industrial Revolution (now around 1,834 parts per billion).

The global methane budget is important for other reasons too: it is less well understood than the CO₂ budget and is influenced to a much greater extent by a wide variety of human activities. About 60 per cent of all methane emissions come from human actions.

These include living sources – such as livestock, rice paddies and landfills – and fossil fuel sources, such as emissions during the extraction and use of coal, oil and natural gas.

We know less about natural sources of methane, such as those from wetlands, permafrost, termites and geological seeps. Biomass and biofuel burning originates from both human and natural fires.

Global methane budget 2003-2012 based on Saunois et al. 2016, Earth System Science Data. See the Global Carbon Atlas.

Given the rapid increase in methane concentrations in the atmosphere, what factors are responsible for its increase?

Uncovering the causes

Scientists are still uncovering the reasons for the rise. Possibilities include: increased emissions from agriculture, particularly from rice and cattle production; emissions from tropical and northern wetlands; and greater losses during the extraction and use of fossil fuels, such as from fracking in the United States. Changes in how much methane is destroyed in the atmosphere might also be a contributor.

Our approach shows an emerging and consistent picture, with a suggested dominant source along with other contributing secondary sources.

First, carbon isotopes suggest a stronger contribution from living sources than from fossil fuels. These isotopes reflect the weights of carbon atoms in methane from different sources. Methane from fossil fuel use also increased, but evidently not by as much as from living sources.

Second, our analysis suggests that the tropics were a dominant contributor to the atmospheric growth. This is consistent with the vast agricultural development and wetland areas found there (and consistent with increased emissions from living sources).

This also excludes a dominant role for fossil fuels, which we would expect to be concentrated in temperate regions such as the US and China. Those emissions have increased, but not by as much as from tropical and living sources.

Third, state-of-the-art global wetland models show little evidence for any significant increase in wetland emissions over the study period.

The overall chain of evidence suggests that agriculture, including livestock, is likely to be a dominant cause of the rapid increase in methane concentrations. This is consistent with increased emissions reported by the Food and Agriculture Organisation and does not exclude the role of other sources.

Remarkably, there is still a gap between what we know about methane emissions and methane concentrations in the atmosphere. If we add all the methane emissions estimated with data inventories and models, we get a number bigger than the one consistent with the growth in methane concentrations. This highlights the need for better accounting and reporting of methane emissions.

We also don’t know enough about emissions from wetlands, thawing permafrost and the destruction of methane in the atmosphere.

The way forward

At a time when global CO₂ emissions from fossil fuels and industry have stalled for three consecutive years, the upward methane trend we highlight in our new papers is unwelcome news. Food production will continue to grow strongly to meet the demands of a growing global population and to feed a growing global middle class keen on diets richer in meat.

However, unlike CO₂, which remains in the atmosphere for centuries, a molecule of methane lasts only about 10 years.

This, combined with methane’s super global warming potency, means we have a massive opportunity. If we cut methane emissions now, this will have a rapid impact on methane concentrations in the atmosphere, and therefore on global warming.

There are large global and domestic efforts to support more climate-friendly food production with many successes, ample opportunities for improvement, and potential game-changers.

However, current efforts are insufficient if we are to follow pathways consistent with keeping global warming to below 2℃. Reducing methane emissions needs to become a prevalent feature in the global pursuit of the sustainable future outlined in the Paris Agreement.The Conversation

Pep Canadell is executive director of the Global Carbon Project, CSIRO. Ben Poulter is a research scientist at NASA. Marielle Saunois is a researcher in environmental science at the University of Versailles Saint Quentin. Paul Krummel is research group leader at CSIRO. Philippe Bousquet is a professor of environment scinece at the University of Versailles Saint-Quentin en Yvelines. Rob Jackson is chair of the Global Carbon Project at Stanford University.

This article was originally published on The Conversation. Read the original article.


Where did London’s parakeets come from?

Parakeets in the skies above Wormwood Scrubs, west London. Image: Getty.

Visitors to London’s many green spaces would have to be stubbornly looking at their feet to not see one of the UK’s most exotic birds.  Dubbed “posh pigeons” by unimaginative Londoners, these brilliant green parakeets stand out among the fauna of Northern Europe’s mostly grey cities.

‘Parakeets’ is actually an umbrella term referring to the multiple species, which can now be found in London, Amsterdam, Brussels, Paris and various German cities. By far the most common is the Indian ring-necked parakeet, easily recognisable by the stylish red ring around their neck, a matching red beak and, of course, the loud squawking.

In the last 50 years these migrants from South Asia have arrived and thrived, settling into their own ecological niche. In the UK, London is a particular stronghold, but although they may have originally settled in the leafy streets of Twickenham, the birds can now be found in cities as far north as Glasgow.

The story of how they ended up in London is a matter of some discussion and plenty of myth. One often reported theory is that the capitals’ current population are the descendants of birds that escaped from Shepperton Studios during filming of The African Queen, starring Humphrey Bogart and Katharine Hepburn. Others would tell you that they escaped from Syon Park in the early 1970s, when a piece of debris from a passing plane damaged the aviary and allowed them to escape. This chimes with their original concentration in South West London.
My favourite story by far is that they were released by Jimi Hendrix on Carnaby Street in the late 60s. Bored of London’s grey skyline, he set the little fellas free to liven up the place.

However they got here, from 1970 onwards their numbers boomed. In 1992, 700 birds were recorded in London Bird Report. By 1998, 2,845 were seen in the London Area, and by 2006 the ring-neck parakeet was 15th most sighted bird in London.

Darwin would be proud at how well they adapted to the new environment. Toughened up by the hard Himalayan climate, they handle the cold northern European winters better than most locals. Global warming is often brought up in discussions of the parakeets, but it is certainly only part of the story.
It helps, too, that the birds have a 35 year lifespan and few local predators, enabling them to breed freely.

As with any new species, the debate has raged about whether they are harmful to the ecosystem. Strangely reminiscent of the debate over human migrants, often the birds have often been accused of stealing the homes of the natives. The parakeets do nest in tree cavities also used by jackdaws, owls and woodpeckers – but there is little evidence that native species are being muscled out. 

The also provide a food source for Britain's embattled birds of prey. Owls and peregrine falcons have been know to eat them. Charlie and Tom, two city dwelling falcons monitored by Nathalie Mahieu, often bring back parakeets as food.
Of more concern is the new arrivals’ effect on plants and trees. By 2009 their numbers in the UK had grown so much that they were added to the “general licence” of species, which can be killed without individual permission if they are causing damage.

And Parrotnet, am EU funded research project studying the development of parakeet populations across Europe, has warned of the risk they pose to agriculture. In their native India, the parakeets are known to cause widespread damage to crops. As agriculture develops in the UK in line with warmer climates, crops such as maize, grapes and sunflower will become more popular. In India the birds have been documented as reducing maize crops by 81 per cent.

So the parakeets remain divisive. Environmentalist Tony Juniper has disparagingly described them as “the grey squirrel of the skies”. By contrast, the University of York biologist Chris D. Thomas has argued that the parakeets should be left free to move and breed. He sees those wary of the parakeet boom of “irrational persecution” of the bird.

For good or ill the parakeets are here to stay. As so often with migrants of all kinds, there has been some unease about the impact they have had – but the birds, popular amongst Londoners, certainly add colour to the city. Thriving in the urban environment thousands of miles from their natural habitat, they are a metropolitan bird for Europe’s metropolitan cities. 

Want more of this stuff? Follow CityMetric on Twitter or Facebook